Suppr超能文献

用于可交换结构化交互过程的层次网络模型。

Hierarchical network models for exchangeable structured interaction processes.

作者信息

Dempsey Walter, Oselio Brandon, Hero Alfred

机构信息

University of Michigan, Biostatistics, Ann Arbor, United States.

University of Michigan, Ann Arbor, United States.

出版信息

J Am Stat Assoc. 2022;117(540):2056-2073. doi: 10.1080/01621459.2021.1896526. Epub 2021 May 10.

Abstract

Network data often arises via a series of among a population of constituent elements. E-mail exchanges, for example, have a single sender followed by potentially multiple receivers. Scientific articles, on the other hand, may have multiple subject areas and multiple authors. We introduce a statistical model, termed the Pitman-Yor hierarchical vertex components model (PY-HVCM), that is well suited for structured interaction data. The proposed PY-HVCM effectively models complex relational data by partial pooling of local information via a latent, shared population-level distribution. The PY-HCVM is a canonical example of - a subfamily of models for , i.e., networks invariant to interaction relabeling. Theoretical analysis and supporting simulations provide clear model interpretation, and establish global sparsity and power law degree distribution. A computationally tractable Gibbs sampling algorithm is derived for inferring sparsity and power law properties of complex networks. We demonstrate the model on both the Enron e-mail dataset and an ArXiv dataset, showing goodness of fit of the model via posterior predictive validation.

摘要

网络数据通常通过一系列构成元素群体之间的交互产生。例如,电子邮件交流有一个发送者,随后可能有多个接收者。另一方面,科学文章可能有多个主题领域和多个作者。我们引入了一种统计模型,称为皮特曼 - 约尔层次顶点组件模型(PY - HVCM),它非常适合结构化交互数据。所提出的PY - HVCM通过潜在的共享总体水平分布对局部信息进行部分合并,有效地对复杂关系数据进行建模。PY - HCVM是指数族的一个典型例子——用于交互重新标记不变网络的模型子族。理论分析和支持性模拟提供了清晰的模型解释,并建立了全局稀疏性和幂律度分布。推导了一种计算上易于处理的吉布斯采样算法,用于推断复杂网络的稀疏性和幂律特性。我们在安然电子邮件数据集和一个ArXiv数据集上展示了该模型,通过后验预测验证显示了模型的拟合优度。

相似文献

1
Hierarchical network models for exchangeable structured interaction processes.用于可交换结构化交互过程的层次网络模型。
J Am Stat Assoc. 2022;117(540):2056-2073. doi: 10.1080/01621459.2021.1896526. Epub 2021 May 10.
2
EDGE EXCHANGEABLE MODELS FOR INTERACTION NETWORKS.交互网络的边缘可交换模型
J Am Stat Assoc. 2018;113(523):1311-1326. doi: 10.1080/01621459.2017.1341413. Epub 2018 Jun 12.
5
Latent IBP Compound Dirichlet Allocation.潜在 IBP 复合狄利克雷分配。
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):321-33. doi: 10.1109/TPAMI.2014.2313122.
7
Pitman Yor Diffusion Trees for Bayesian Hierarchical Clustering.基于贝叶斯层次聚类的皮特曼-约扩散树。
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):271-89. doi: 10.1109/TPAMI.2014.2313115.
9
Understanding Hierarchical Processes.理解分层过程。
Entropy (Basel). 2022 Nov 22;24(12):1703. doi: 10.3390/e24121703.

本文引用的文献

1
EDGE EXCHANGEABLE MODELS FOR INTERACTION NETWORKS.交互网络的边缘可交换模型
J Am Stat Assoc. 2018;113(523):1311-1326. doi: 10.1080/01621459.2017.1341413. Epub 2018 Jun 12.
2
Sparse graphs using exchangeable random measures.使用可交换随机测度的稀疏图。
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1295-1366. doi: 10.1111/rssb.12233. Epub 2017 Sep 23.
5
Hypergraph-based anomaly detection of high-dimensional co-occurrences.基于超图的高维共现异常检测。
IEEE Trans Pattern Anal Mach Intell. 2009 Mar;31(3):563-9. doi: 10.1109/TPAMI.2008.232.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验