Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
Ecole National de l'Elevage et de la Santé Animale, 03 BP 7026, Ouagadougou 03, Burkina Faso.
BMC Microbiol. 2018 Nov 23;18(Suppl 1):147. doi: 10.1186/s12866-018-1295-4.
Tsetse flies (Diptera: Glossinidae) are solely responsible for the transmission of African trypanosomes, causative agents of sleeping sickness in humans and nagana in livestock. Due to the lack of efficient vaccines and the emergence of drug resistance, vector control approaches such as the sterile insect technique (SIT), remain the most effective way to control disease. SIT is a species-specific approach and therefore requires accurate identification of natural pest populations at the species level. However, the presence of morphologically similar species (species complexes and sub-species) in tsetse flies challenges the successful implementation of SIT-based population control.
In this study, we evaluate different molecular tools that can be applied for the delimitation of different Glossina species using tsetse samples derived from laboratory colonies, natural populations and museum specimens. The use of mitochondrial markers, nuclear markers (including internal transcribed spacer 1 (ITS1) and different microsatellites), and bacterial symbiotic markers (Wolbachia infection status) in combination with relatively inexpensive techniques such as PCR, agarose gel electrophoresis, and to some extent sequencing provided a rapid, cost effective, and accurate identification of several tsetse species.
The effectiveness of SIT benefits from the fine resolution of species limits in nature. The present study supports the quick identification of large samples using simple and cost effective universalized protocols, which can be easily applied by countries/laboratories with limited resources and expertise.
采采蝇(双翅目:舌蝇科)是唯一负责传播人体昏睡病和家畜那加那病病原体——非洲锥虫的媒介。由于缺乏有效的疫苗和药物耐药性的出现,诸如不育昆虫技术(SIT)等媒介控制方法仍然是控制疾病的最有效方法。SIT 是一种针对特定物种的方法,因此需要在物种水平上准确识别自然害虫种群。然而,采采蝇中形态相似的物种(物种复合体和亚种)的存在,给 SIT 为基础的种群控制的成功实施带来了挑战。
在这项研究中,我们评估了不同的分子工具,这些工具可以用于利用来自实验室群体、自然种群和博物馆标本的采采蝇样本来划定不同的舌蝇物种。使用线粒体标记物、核标记物(包括内部转录间隔区 1(ITS1)和不同的微卫星)和细菌共生标记物(沃尔巴克氏体感染状态),结合相对廉价的技术,如 PCR、琼脂糖凝胶电泳,在一定程度上进行测序,为几种采采蝇物种的快速、经济有效和准确识别提供了支持。
SIT 的有效性受益于对自然界中物种界限的精细分辨率。本研究支持使用简单且经济有效的通用协议快速识别大量样本,这对于资源和专业知识有限的国家/实验室来说是易于应用的。