College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, 300457, China.
J Ind Microbiol Biotechnol. 2019 Jan;46(1):81-90. doi: 10.1007/s10295-018-2114-5. Epub 2018 Nov 23.
Although CRISPR/Cas9-mediated gene editing technology has developed vastly in Escherichia coli, the chromosomal integration of large DNA fragment is still challenging compared with gene deletion and small fragment integration. Moreover, to guarantee sufficient Cas9-induced double-strand breaks, it is usually necessary to design several gRNAs to select the appropriate one. Accordingly, we established a practical daily routine in the laboratory work, involving multiple-step chromosomal integration of the divided segments from a large DNA fragment. First, we introduced and optimized the protospacers from Streptococcus pyogenes in E. coli W3110. Next, the appropriate fragment size for each round of integration was optimized to be within 3-4 kb. Taking advantage of the optimized protospacer/gRNA pairs, a DNA fragment with a total size of 15.4 kb, containing several key genes for uridine biosynthesis, was integrated into W3110 chromosome, which produced 5.6 g/L uridine in shake flask fermentation. Using this strategy, DNA fragments of virtually any length can be integrated into a suitable genomic site, and two gRNAs can be alternatively used, avoiding the tedious construction of gRNA-expressing plasmids. This study thus presents a useful strategy for large DNA fragment integration into the E. coli chromosome, which can be easily adapted for use in other bacteria.
尽管 CRISPR/Cas9 介导的基因编辑技术在大肠杆菌中得到了广泛的发展,但与基因缺失和小片段整合相比,染色体整合大片段 DNA 仍然具有挑战性。此外,为了保证足够的 Cas9 诱导的双链断裂,通常需要设计几个 gRNA 来选择合适的 gRNA。因此,我们在实验室工作中建立了一种实用的日常工作流程,涉及从大片段 DNA 中划分的片段的多步染色体整合。首先,我们在大肠杆菌 W3110 中引入并优化了来自酿脓链球菌的原间隔序列。接下来,我们优化了每轮整合的合适片段大小,使其在 3-4kb 之间。利用优化的原间隔序列/gRNA 对,我们将一个总大小为 15.4kb 的 DNA 片段,其中包含几个尿嘧啶生物合成的关键基因,整合到 W3110 染色体中,在摇瓶发酵中产生了 5.6g/L 的尿嘧啶。使用这种策略,几乎任何长度的 DNA 片段都可以整合到合适的基因组位点,并且可以交替使用两个 gRNA,避免了繁琐的 gRNA 表达质粒的构建。因此,本研究提出了一种将大片段 DNA 整合到大肠杆菌染色体中的有用策略,该策略可轻松应用于其他细菌。