Suppr超能文献

具有反馈回路的时不变生物网络:结构方程模型和结构可识别性。

Time-invariant biological networks with feedback loops: structural equation models and structural identifiability.

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, People's Republic of China.

School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, People's Republic of China.

出版信息

IET Syst Biol. 2018 Dec;12(6):264-272. doi: 10.1049/iet-syb.2018.5004.

Abstract

Quantitative analyses of biological networks such as key biological parameter estimation necessarily call for the use of graphical models. While biological networks with feedback loops are common in reality, the development of graphical model methods and tools that are capable of dealing with feedback loops is still in its infancy. Particularly, inadequate attention has been paid to the parameter identifiability problem for biological networks with feedback loops such that unreliable or even misleading parameter estimates may be obtained. In this study, the structural identifiability analysis problem of time-invariant linear structural equation models (SEMs) with feedback loops is addressed, resulting in a general and efficient solution. The key idea is to combine Mason's gain with Wright's path coefficient method to generate identifiability equations, from which identifiability matrices are then derived to examine the structural identifiability of every single unknown parameter. The proposed method does not involve symbolic or expensive numerical computations, and is applicable to a broad range of time-invariant linear SEMs with or without explicit latent variables, presenting a remarkable breakthrough in terms of generality. Finally, a subnetwork structure of the neural network is used to illustrate the application of the authors' method in practice.

摘要

对生物网络等关键生物参数进行定量分析,必然需要使用图形模型。虽然具有反馈回路的生物网络在现实中很常见,但能够处理反馈回路的图形模型方法和工具的发展仍处于起步阶段。特别是,对于具有反馈回路的生物网络的参数可识别性问题,还没有得到足够的重视,以至于可能得到不可靠甚至误导性的参数估计。在这项研究中,解决了具有反馈回路的时不变线性结构方程模型(SEM)的结构可识别性分析问题,得到了一个通用而有效的解决方案。关键思想是将 Mason 的增益与 Wright 的路径系数方法相结合,生成可识别性方程,然后从这些方程中推导出可识别性矩阵,以检查每个未知参数的结构可识别性。所提出的方法不涉及符号或昂贵的数值计算,适用于具有或不具有显式潜在变量的广泛的时不变线性 SEM,在通用性方面取得了显著突破。最后,使用神经网络的子网结构说明了作者方法在实践中的应用。

相似文献

2
Structural identifiability of cyclic graphical models of biological networks with latent variables.
BMC Syst Biol. 2016 Jun 13;10(1):41. doi: 10.1186/s12918-016-0287-y.
4
Parameter identifiability-based optimal observation remedy for biological networks.
BMC Syst Biol. 2017 May 4;11(1):53. doi: 10.1186/s12918-017-0432-2.
5
Synthesis of the Dynamical Properties of Feedback Loops in Bio-Pathways.
IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):1217-1226. doi: 10.1109/TCBB.2019.2936200. Epub 2021 Jun 3.
6
Colored motifs reveal computational building blocks in the C. elegans brain.
PLoS One. 2011 Mar 7;6(3):e17013. doi: 10.1371/journal.pone.0017013.
8
On the relationship between sloppiness and identifiability.
Math Biosci. 2016 Dec;282:147-161. doi: 10.1016/j.mbs.2016.10.009. Epub 2016 Oct 24.
10

引用本文的文献

2
Fusion Validity: Theory-Based Scale Assessment via Causal Structural Equation Modeling.
Front Psychol. 2019 Jun 4;10:1139. doi: 10.3389/fpsyg.2019.01139. eCollection 2019.

本文引用的文献

1
Parameter identifiability-based optimal observation remedy for biological networks.
BMC Syst Biol. 2017 May 4;11(1):53. doi: 10.1186/s12918-017-0432-2.
3
Functional Magnetic Resonance Imaging of the Human Brainstem and Cervical Spinal Cord during Cognitive Modulation of Pain.
Crit Rev Biomed Eng. 2016;44(1-2):47-71. doi: 10.1615/CritRevBiomedEng.2016016541.
4
Structural identifiability of cyclic graphical models of biological networks with latent variables.
BMC Syst Biol. 2016 Jun 13;10(1):41. doi: 10.1186/s12918-016-0287-y.
6
Inference of gene regulatory networks from genetic perturbations with linear regression model.
PLoS One. 2013 Dec 23;8(12):e83263. doi: 10.1371/journal.pone.0083263. eCollection 2013.
7
Learning graphical model parameters with approximate marginal inference.
IEEE Trans Pattern Anal Mach Intell. 2013 Oct;35(10):2454-67. doi: 10.1109/TPAMI.2013.31.
8
Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
PLoS Comput Biol. 2013;9(5):e1003068. doi: 10.1371/journal.pcbi.1003068. Epub 2013 May 23.
9
Observability of complex systems.
Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2460-5. doi: 10.1073/pnas.1215508110. Epub 2013 Jan 28.
10
PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins.
Nucleic Acids Res. 2013 Jan;41(Database issue):D306-11. doi: 10.1093/nar/gks1230. Epub 2012 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验