Suppr超能文献

利用基因扰动推断具有稀疏结构方程模型的基因调控网络。

Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.

机构信息

Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.

出版信息

PLoS Comput Biol. 2013;9(5):e1003068. doi: 10.1371/journal.pcbi.1003068. Epub 2013 May 23.

Abstract

Integrating genetic perturbations with gene expression data not only improves accuracy of regulatory network topology inference, but also enables learning of causal regulatory relations between genes. Although a number of methods have been developed to integrate both types of data, the desiderata of efficient and powerful algorithms still remains. In this paper, sparse structural equation models (SEMs) are employed to integrate both gene expression data and cis-expression quantitative trait loci (cis-eQTL), for modeling gene regulatory networks in accordance with biological evidence about genes regulating or being regulated by a small number of genes. A systematic inference method named sparsity-aware maximum likelihood (SML) is developed for SEM estimation. Using simulated directed acyclic or cyclic networks, the SML performance is compared with that of two state-of-the-art algorithms: the adaptive Lasso (AL) based scheme, and the QTL-directed dependency graph (QDG) method. Computer simulations demonstrate that the novel SML algorithm offers significantly better performance than the AL-based and QDG algorithms across all sample sizes from 100 to 1,000, in terms of detection power and false discovery rate, in all the cases tested that include acyclic or cyclic networks of 10, 30 and 300 genes. The SML method is further applied to infer a network of 39 human genes that are related to the immune function and are chosen to have a reliable eQTL per gene. The resulting network consists of 9 genes and 13 edges. Most of the edges represent interactions reasonably expected from experimental evidence, while the remaining may just indicate the emergence of new interactions. The sparse SEM and efficient SML algorithm provide an effective means of exploiting both gene expression and perturbation data to infer gene regulatory networks. An open-source computer program implementing the SML algorithm is freely available upon request.

摘要

将遗传扰动与基因表达数据相结合,不仅可以提高调控网络拓扑推断的准确性,还可以学习基因之间的因果调控关系。虽然已经开发了许多方法来整合这两种类型的数据,但高效和强大算法的理想目标仍然存在。在本文中,稀疏结构方程模型(SEM)被用于整合基因表达数据和顺式表达数量性状位点(cis-eQTL),以便根据关于少数基因调控或被调控的基因的生物学证据来构建基因调控网络。开发了一种名为稀疏感知最大似然(SML)的系统推断方法,用于 SEM 估计。使用模拟的有向无环或循环网络,将 SML 性能与两种最先进的算法进行比较:基于自适应 Lasso(AL)的方案和 QTL 导向依赖图(QDG)方法。计算机模拟表明,在所有测试案例中,包括有向无环或循环网络的 10、30 和 300 个基因,新型 SML 算法在检测能力和假发现率方面均优于基于 AL 和 QDG 算法,涵盖了从 100 到 1000 的所有样本大小。SML 方法进一步应用于推断 39 个人类基因的网络,这些基因与免疫功能有关,并且每个基因都有可靠的 eQTL。生成的网络包含 9 个基因和 13 个边。大多数边代表从实验证据中合理预期的相互作用,而其余的边可能只是表明新相互作用的出现。稀疏 SEM 和高效 SML 算法为利用基因表达和扰动数据推断基因调控网络提供了有效的方法。请求时可免费提供实现 SML 算法的开源计算机程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cd1/3662697/fb32878856b5/pcbi.1003068.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验