Suppr超能文献

用近似边缘推理学习图形模型参数。

Learning graphical model parameters with approximate marginal inference.

机构信息

NICTA and Australia National University, Canberra, Australia.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Oct;35(10):2454-67. doi: 10.1109/TPAMI.2013.31.

Abstract

Likelihood-based learning of graphical models faces challenges of computational complexity and robustness to model misspecification. This paper studies methods that fit parameters directly to maximize a measure of the accuracy of predicted marginals, taking into account both model and inference approximations at training time. Experiments on imaging problems suggest marginalization-based learning performs better than likelihood-based approximations on difficult problems where the model being fit is approximate in nature.

摘要

基于似然的图形模型学习面临计算复杂性和对模型失配稳健性的挑战。本文研究了在训练时直接拟合参数以最大化预测边缘准确性度量的方法,同时考虑了模型和推理的近似。在成像问题上的实验表明,在拟合的模型本质上是近似的困难问题上,基于边缘的学习比基于似然的近似表现更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验