Zhang Demao, Zhou Chenchen, Wang Qingxuan, Cai Linyi, Du Wei, Li Xiaobing, Zhou Xuedong, Xie Jing
Cell Physiol Biochem. 2018;51(3):1013-1026. doi: 10.1159/000495482. Epub 2018 Nov 26.
BACKGROUND/AIMS: Osteocytes can sense and respond to extracellular stimuli, including biochemical factors throughout the cell body, dendritic processes, and cilia bending. However, further exploration is required of osteocyte function in response to substrate stiffness, an important passive mechanical cue at the interface between osteocytes and the extracellular matrix, and the deep bio-mechanism in osteocytes involving mechanosensing of cell behavior.
We fabricated silicon-based elastomer polydimethylsiloxane substrates with different stiffnesses but with the same surface topologies. We then seeded osteocytes onto the substrates to examine their responses. Methodologies used included scanning electron microscopy (SEM) for cell morphology, confocal laser scanning microscopy (CLSM) for protein distribution, western blot for protein levels, co-immunoprecipitation for protein interactions, and quantitative real-time polymerase chain reaction for gene expression.
SEM images revealed that substrate stiffness induced a change in osteocyte morphology, and CLSM of F-actin staining revealed that substrate stiffness can alter the cytoskeleton. These results were accompanied by changes in focal adhesion capacity in osteocytes, determined via characterization of vinculin expression and distribution. Furthermore, on the exterior of the cell membrane, fibronectin was altered by substrate stiffness. The fibronectin then induced a change in paxillin on the inner membrane of the cell via protein-protein interaction through transmembrane processing. Paxillin led to changes in connexin 43 via protein-protein binding, thereby influencing osteocyte gap junction elongation.
This process -from mechanosensing and mechanotransduction to cell function - not only indicates that the effects of mechanical factors on osteocytes can be directly sensed from the cell body, but also indicates the involvement of paxillin transduction.
背景/目的:骨细胞能够感知并响应细胞外刺激,包括遍及整个细胞体、树突状突起和纤毛弯曲的生化因子。然而,对于骨细胞在响应底物硬度(这是骨细胞与细胞外基质界面处的一种重要被动机械信号)时的功能,以及骨细胞中涉及细胞行为机械传感的深层生物机制,仍需进一步探索。
我们制备了具有不同硬度但表面拓扑结构相同的硅基弹性体聚二甲基硅氧烷底物。然后将骨细胞接种到底物上以检查它们的反应。使用的方法包括用于细胞形态学的扫描电子显微镜(SEM)、用于蛋白质分布的共聚焦激光扫描显微镜(CLSM)、用于蛋白质水平的蛋白质印迹、用于蛋白质相互作用的免疫共沉淀以及用于基因表达的定量实时聚合酶链反应。
SEM图像显示底物硬度诱导了骨细胞形态的变化,F-肌动蛋白染色的CLSM显示底物硬度可改变细胞骨架。这些结果伴随着通过纽蛋白表达和分布表征确定的骨细胞粘着斑能力的变化。此外,在细胞膜外部,纤连蛋白因底物硬度而改变。然后,纤连蛋白通过跨膜加工的蛋白质-蛋白质相互作用诱导细胞内膜上桩蛋白的变化。桩蛋白通过蛋白质-蛋白质结合导致连接蛋白43的变化,从而影响骨细胞间隙连接的延长。
这个从机械传感和机械转导到细胞功能的过程,不仅表明机械因素对骨细胞的影响可以直接从细胞体感知到,还表明了桩蛋白转导的参与。