Suppr超能文献

微生物合成的贻贝足蛋白重复序列表现出增强的水下粘附性。

Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion.

出版信息

ACS Appl Mater Interfaces. 2018 Dec 12;10(49):43003-43012. doi: 10.1021/acsami.8b14890. Epub 2018 Nov 27.

Abstract

Mussels strongly adhere to a variety of surfaces by secreting byssal threads that contain mussel foot proteins (Mfps). Recombinant production of Mfps presents an attractive route for preparing advanced adhesive materials. Using synthetic biology strategies, we synthesized Mfp5 together with Mfp5 oligomers containing two or three consecutive, covalently-linked Mfp5 sequences named Mfp5 and Mfp5. The force and work of adhesion of these proteins were measured underwater with a colloidal probe mounted on an atomic force microscope and the adsorption was measured with a quartz crystal microbalance. We found positive correlations between Mfp5 molecular weight and underwater adhesive properties, including force of adhesion, work of adhesion, protein layer thickness, and recovery distance. DOPA-modified Mfp5 displayed a high force of adhesion (201 ± 36 nN μm) and a high work of adhesion (68 ± 21 fJ μm) for a cure time of 200 s, which are higher than those of previously reported Mfp-mimetic adhesives. Results presented in this study highlight the power of synthetic biology in producing biocompatible and highly adhesive Mfp-based materials.

摘要

贻贝通过分泌含有贻贝足蛋白 (Mfps) 的足丝强烈附着在各种表面上。Mfps 的重组生产为制备先进的粘性材料提供了一条有吸引力的途径。我们使用合成生物学策略,合成了 Mfp5 以及含有两个或三个连续、共价连接的 Mfp5 序列的 Mfp5 三聚体和 Mfp5 三聚体,这些序列分别命名为 Mfp5 和 Mfp5。使用安装在原子力显微镜上的胶体探针在水下测量这些蛋白质的粘附力和功,并用石英晶体微天平测量吸附。我们发现 Mfp5 分子量与水下粘附性能之间存在正相关关系,包括粘附力、粘附功、蛋白质层厚度和恢复距离。DOPA 修饰的 Mfp5 在 200 s 的固化时间内表现出高粘附力(201 ± 36 nN μm)和高粘附功(68 ± 21 fJ μm),高于以前报道的 Mfp 模拟粘合剂。本研究结果强调了合成生物学在生产生物相容性和高粘性 Mfp 基材料方面的强大功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验