Suppr超能文献

以交叉方法进行监测和实验室能力建设,作为提高乌干达卫生安全的平台。

A Cross-Cutting Approach to Surveillance and Laboratory Capacity as a Platform to Improve Health Security in Uganda.

机构信息

Mohammed Lamorde, PhD, FRCP, is Head of the Department of Prevention, Care and Treatment, Infectious Diseases Institute, Kampala, Uganda. Co-senior author.

Arthur Mpimbaza, MBChB, MMed, MSc, is Project Coordinator, Infectious Diseases Research Collaboration, Kampala, and Lecturer, Child Health and Development Centre, College of Health Sciences, Makerere University, Kampala. Co-senior author.

出版信息

Health Secur. 2018 Fall;16(S1):S76-S86. doi: 10.1089/hs.2018.0051.

Abstract

Global health security depends on effective surveillance for infectious diseases. In Uganda, resources are inadequate to support collection and reporting of data necessary for an effective and responsive surveillance system. We used a cross-cutting approach to improve surveillance and laboratory capacity in Uganda by leveraging an existing pediatric inpatient malaria sentinel surveillance system to collect data on expanded causes of illness, facilitate development of real-time surveillance, and provide data on antimicrobial resistance. Capacity for blood culture collection was established, along with options for serologic testing for select zoonotic conditions, including arboviral infection, brucellosis, and leptospirosis. Detailed demographic, clinical, and laboratory data for all admissions were captured through a web-based system accessible at participating hospitals, laboratories, and the Uganda Public Health Emergency Operations Center. Between July 2016 and December 2017, the expanded system was activated in pediatric wards of 6 regional government hospitals. During that time, patient data were collected from 30,500 pediatric admissions, half of whom were febrile but lacked evidence of malaria. More than 5,000 blood cultures were performed; 4% yielded bacterial pathogens, and another 4% yielded likely contaminants. Several WHO antimicrobial resistance priority pathogens were identified, some with multidrug-resistant phenotypes, including Acinetobacter spp., Citrobacter spp., Escherichia coli, Staphylococcus aureus, and typhoidal and nontyphoidal Salmonella spp. Leptospirosis and arboviral infections (alphaviruses and flaviviruses) were documented. The lessons learned and early results from the development of this multisectoral surveillance system provide the knowledge, infrastructure, and workforce capacity to serve as a foundation to enhance the capacity to detect, report, and rapidly respond to wide-ranging public health concerns in Uganda.

摘要

全球卫生安全依赖于传染病的有效监测。在乌干达,资源不足以为有效的、有反应能力的监测系统提供支持,无法收集和报告所需的数据。我们利用现有的儿科住院疟疾哨点监测系统,通过采用跨领域方法,来提高乌干达的监测和实验室能力,以收集扩大疾病病因的数据,促进实时监测的发展,并提供关于抗微生物药物耐药性的数据。建立了血培养采集能力,并提供针对选定人畜共患疾病的血清学检测选择,包括虫媒病毒感染、布鲁氏菌病和钩端螺旋体病。通过一个基于网络的系统,详细记录所有入院患者的人口统计学、临床和实验室数据,该系统可在参与的医院、实验室和乌干达公共卫生应急行动中心使用。2016 年 7 月至 2017 年 12 月,该扩展系统在 6 家地区政府医院的儿科病房中投入使用。在此期间,从 30500 名儿科住院患者中收集了患者数据,其中一半发热但没有疟疾证据。进行了超过 5000 次血培养;4%的培养物中发现了细菌病原体,另外 4%的培养物中发现了可能的污染物。确定了几种世界卫生组织抗微生物药物耐药性优先病原体,包括不动杆菌属、柠檬酸杆菌属、大肠杆菌、金黄色葡萄球菌以及伤寒和非伤寒沙门氏菌属,其中一些具有多药耐药表型。还记录了钩端螺旋体病和虫媒病毒感染(黄病毒和 flaviviruses)。从开发这个多部门监测系统中吸取的经验教训和早期结果,为增强乌干达发现、报告和快速应对广泛公共卫生关注的能力提供了知识、基础设施和劳动力能力。

相似文献

引用本文的文献

2
A toolkit for planning and implementing acute febrile illness (AFI) surveillance.急性发热性疾病(AFI)监测规划与实施工具包。
PLOS Glob Public Health. 2024 Apr 18;4(4):e0003115. doi: 10.1371/journal.pgph.0003115. eCollection 2024.

本文引用的文献

2
Patterns of Human Plague in Uganda, 2008-2016.2008 - 2016年乌干达人间鼠疫模式
Emerg Infect Dis. 2017 Sep;23(9):1517-1521. doi: 10.3201/eid2309.170789.
7
Estimating the Burden of Febrile Illnesses.估算发热性疾病的负担。
PLoS Negl Trop Dis. 2015 Dec 3;9(12):e0004040. doi: 10.1371/journal.pntd.0004040. eCollection 2015 Dec.
9
Multidistrict Outbreak of Marburg Virus Disease-Uganda, 2012.2012年乌干达马尔堡病毒病多地区暴发
J Infect Dis. 2015 Oct 1;212 Suppl 2(Suppl 2):S119-28. doi: 10.1093/infdis/jiv351. Epub 2015 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验