Suppr超能文献

比较人类大脑各脑叶连接组的高级图论参数。

Comparing advanced graph-theoretical parameters of the connectomes of the lobes of the human brain.

作者信息

Szalkai Balázs, Varga Bálint, Grolmusz Vince

机构信息

1PIT Bioinformatics Group, Eötvös University, Budapest, 1117 Hungary.

Uratim Ltd., Budapest, 1118 Hungary.

出版信息

Cogn Neurodyn. 2018 Dec;12(6):549-559. doi: 10.1007/s11571-018-9508-y. Epub 2018 Oct 6.

Abstract

Deep, classical graph-theoretical parameters, like the size of the minimum vertex cover, the chromatic number, or the eigengap of the adjacency matrix of the graph were studied widely by mathematicians in the last century. Most researchers today study much simpler parameters of braingraphs or connectomes which were defined in the last twenty years for enormous networks-like the graph of the World Wide Web-with hundreds of millions of nodes. Since the connectomes, describing the connections of the human brain, typically contain several hundred vertices today, one can compute and analyze the much deeper, harder-to-compute classical graph parameters for these, relatively small graphs of the brain. This deeper approach has proven to be very successful in the comparison of the connectomes of the sexes in our earlier works: we have shown that graph parameters, deeply characterizing the graph connectivity are significantly better in women's connectomes than in men's. In the present contribution we compare numerous graph parameters in the three largest lobes-frontal, parietal, temporal-and in both hemispheres of the human brain. We apply the diffusion weighted imaging data of 423 subjects of the NIH-funded Human Connectome Project, and present some findings, never described before, including that the right parietal lobe contains significantly more edges, has higher average degree, density, larger minimum vertex cover and Hoffman bound than the left parietal lobe. Similar advantages in the deep graph connectivity properties are held for the left frontal versus the right frontal and the right temporal versus the left temporal lobes.

摘要

深度的、经典的图论参数,如最小顶点覆盖的大小、色数或图的邻接矩阵的特征间隙,在上个世纪受到了数学家们的广泛研究。如今,大多数研究人员研究的是脑图或连接组的简单得多的参数,这些参数是在过去二十年中为像拥有数亿个节点的万维网这样的大型网络定义的。由于描述人类大脑连接的连接组如今通常包含数百个顶点,因此对于这些相对较小的脑图,可以计算和分析更深层次、更难计算的经典图参数。在我们早期的工作中,这种更深入的方法已被证明在比较男女连接组时非常成功:我们已经表明,深度表征图连通性的图参数在女性连接组中比在男性连接组中表现得更好。在本论文中,我们比较了人类大脑三个最大脑叶(额叶、顶叶、颞叶)以及两个半球中的众多图参数。我们应用了美国国立卫生研究院资助的人类连接组项目中423名受试者的扩散加权成像数据,并呈现了一些前所未有的发现,包括右侧顶叶比左侧顶叶包含更多的边、具有更高的平均度、密度、更大的最小顶点覆盖和霍夫曼界。在深度图连通性属性方面,左侧额叶与右侧额叶、右侧颞叶与左侧颞叶也存在类似的优势。

相似文献

5
The frequent subgraphs of the connectome of the human brain.人类大脑连接组的频繁子图
Cogn Neurodyn. 2019 Oct;13(5):453-460. doi: 10.1007/s11571-019-09535-y. Epub 2019 May 6.
7
The Graph of Our Mind.我们思维的图谱。
Brain Sci. 2021 Mar 8;11(3):342. doi: 10.3390/brainsci11030342.

本文引用的文献

1
The Graph of Our Mind.我们思维的图谱。
Brain Sci. 2021 Mar 8;11(3):342. doi: 10.3390/brainsci11030342.
6
From abstract topology to real thermodynamic brain activity.从抽象拓扑到真实的脑热力学活动。
Cogn Neurodyn. 2017 Jun;11(3):283-292. doi: 10.1007/s11571-017-9431-7. Epub 2017 Mar 14.
10
Towards a fourth spatial dimension of brain activity.迈向大脑活动的第四个空间维度。
Cogn Neurodyn. 2016 Jun;10(3):189-99. doi: 10.1007/s11571-016-9379-z. Epub 2016 Feb 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验