Suppr超能文献

远红,类 GFP 荧光蛋白的荧光发射峰波长和荧光寿命相偶联。

Peak emission wavelength and fluorescence lifetime are coupled in far-red, GFP-like fluorescent proteins.

机构信息

Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.

出版信息

PLoS One. 2018 Nov 28;13(11):e0208075. doi: 10.1371/journal.pone.0208075. eCollection 2018.

Abstract

The discovery and use of fluorescent proteins revolutionized cell biology by allowing the visualization of proteins in living cells. Advances in fluorescent proteins, primarily through genetic engineering, have enabled more advanced analyses, including Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) and the development of genetically encoded fluorescent biosensors. These fluorescence protein-based sensors are highly effective in cells grown in monolayer cultures. However, it is often desirable to use more complex models including tissue explants, organoids, xenografts, and whole animals. These types of samples have poor light penetration owing to high scattering and absorption of light by tissue. Far-red light with a wavelength between 650-900nm is less prone to scatter, and absorption by tissues and can thus penetrate more deeply. Unfortunately, there are few fluorescent proteins in this region of the spectrum, and they have sub-optimal fluorescent properties including low brightness and short fluorescence lifetimes. Understanding the relationships between the amino-acid sequences of far-red fluorescence proteins and their photophysical properties including peak emission wavelengths and fluorescence lifetimes would be useful in the design of new fluorescence proteins for this region of the spectrum. We used both site-directed mutagenesis and gene-shuffling between mScarlet and mCardinal fluorescence proteins to create new variants and assess their properties systematically. We discovered that for far-red, GFP-like proteins the emission maxima and fluorescence lifetime have a strong inverse correlation.

摘要

荧光蛋白的发现和应用通过使活细胞中的蛋白质可视化而使细胞生物学发生了革命性变化。荧光蛋白的进步,主要通过基因工程,使更先进的分析成为可能,包括Förster 共振能量转移(FRET)和荧光寿命成像显微镜(FLIM)以及基因编码荧光生物传感器的发展。这些基于荧光蛋白的传感器在单层培养的细胞中非常有效。然而,人们通常希望使用更复杂的模型,包括组织外植体、类器官、异种移植物和整个动物。这些类型的样本由于组织对光的高散射和吸收,光穿透性较差。波长在 650-900nm 之间的远红光是光散射的可能性较小,并且组织的吸收较少,因此可以更深地穿透。不幸的是,在该光谱区域中只有少数几种荧光蛋白,并且它们具有较差的荧光特性,包括低亮度和短荧光寿命。了解远红荧光蛋白的氨基酸序列与其光物理特性(包括峰值发射波长和荧光寿命)之间的关系对于设计该光谱区域的新荧光蛋白将非常有用。我们使用定点诱变和 mScarlet 和 mCardinal 荧光蛋白之间的基因洗牌来创建新变体,并系统地评估它们的特性。我们发现对于远红 GFP 样蛋白,发射最大值和荧光寿命具有很强的反比关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f45/6261627/cdaf539337e2/pone.0208075.g001.jpg

相似文献

1
Peak emission wavelength and fluorescence lifetime are coupled in far-red, GFP-like fluorescent proteins.
PLoS One. 2018 Nov 28;13(11):e0208075. doi: 10.1371/journal.pone.0208075. eCollection 2018.
2
Genetically encoded far-red fluorescent sensors for caspase-3 activity.
Biotechniques. 2016 Feb 1;60(2):62-8. doi: 10.2144/000114377. eCollection 2016 Feb.
4
Effect of fixation procedures on the fluorescence lifetimes of Aequorea victoria derived fluorescent proteins.
J Microsc. 2014 Dec;256(3):166-76. doi: 10.1111/jmi.12168. Epub 2014 Sep 1.
5
FRET Imaging of Rho GTPase Activity with Red Fluorescent Protein-Based FRET Pairs.
Methods Mol Biol. 2022;2438:31-43. doi: 10.1007/978-1-0716-2035-9_2.
7
A Tandem Green-Red Heterodimeric Fluorescent Protein with High FRET Efficiency.
Chembiochem. 2016 Dec 14;17(24):2361-2367. doi: 10.1002/cbic.201600492. Epub 2016 Nov 15.
8
Optimized and far-red-emitting variants of fluorescent protein eqFP611.
Chem Biol. 2008 Mar;15(3):224-33. doi: 10.1016/j.chembiol.2008.02.008.
9
A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4089-94. doi: 10.1073/pnas.0509922103. Epub 2006 Mar 6.

引用本文的文献

1
A dual-inducible control system for multistep biosynthetic pathways.
J Biol Eng. 2024 Nov 20;18(1):68. doi: 10.1186/s13036-024-00462-z.
2
Quantitative assessment of near-infrared fluorescent proteins.
Nat Methods. 2023 Oct;20(10):1605-1616. doi: 10.1038/s41592-023-01975-z. Epub 2023 Sep 4.
3
Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts.
BBA Adv. 2023 Apr 28;3:100091. doi: 10.1016/j.bbadva.2023.100091. eCollection 2023.
4
The Luminescence Hypothesis of Olfaction.
Sensors (Basel). 2023 Jan 25;23(3):1333. doi: 10.3390/s23031333.
5
Unlocking the strength of inducible promoters in Gram-negative bacteria.
Microb Biotechnol. 2023 May;16(5):961-976. doi: 10.1111/1751-7915.14219. Epub 2023 Feb 3.
6
Molecular super-gluing: a straightforward tool for antibody labelling and its application to mycotoxin biosensing.
Anal Bioanal Chem. 2022 Jul;414(18):5373-5384. doi: 10.1007/s00216-021-03841-3. Epub 2022 Jan 3.
7
Genetic encoding of a highly photostable, long lifetime fluorescent amino acid for imaging in mammalian cells.
Chem Sci. 2021 Aug 3;12(36):11955-11964. doi: 10.1039/d1sc01914g. eCollection 2021 Sep 22.
9
Image-Based Analysis of Protein Stability.
Cytometry A. 2020 Apr;97(4):363-377. doi: 10.1002/cyto.a.23928. Epub 2019 Nov 27.
10
Structure and functional reselection of the Mango-III fluorogenic RNA aptamer.
Nat Chem Biol. 2019 May;15(5):472-479. doi: 10.1038/s41589-019-0267-9. Epub 2019 Apr 15.

本文引用的文献

2
A far-red emitting fluorescent marker protein, mGarnet2, for microscopy and STED nanoscopy.
Chem Commun (Camb). 2017 Jan 10;53(5):979-982. doi: 10.1039/c6cc09081h.
3
Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores.
Curr Opin Struct Biol. 2017 Aug;45:91-99. doi: 10.1016/j.sbi.2016.12.001. Epub 2016 Dec 27.
4
mScarlet: a bright monomeric red fluorescent protein for cellular imaging.
Nat Methods. 2017 Jan;14(1):53-56. doi: 10.1038/nmeth.4074. Epub 2016 Nov 21.
5
The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins.
Trends Biochem Sci. 2017 Feb;42(2):111-129. doi: 10.1016/j.tibs.2016.09.010. Epub 2016 Nov 1.
6
Fluorescent indicators for simultaneous reporting of all four cell cycle phases.
Nat Methods. 2016 Dec;13(12):993-996. doi: 10.1038/nmeth.4045. Epub 2016 Oct 31.
8
Genetically encoded far-red fluorescent sensors for caspase-3 activity.
Biotechniques. 2016 Feb 1;60(2):62-8. doi: 10.2144/000114377. eCollection 2016 Feb.
9
Brighter Red Fluorescent Proteins by Rational Design of Triple-Decker Motif.
ACS Chem Biol. 2016 Feb 19;11(2):508-17. doi: 10.1021/acschembio.5b00774. Epub 2016 Jan 5.
10
Near-infrared fluorescent proteins engineered from bacterial phytochromes.
Curr Opin Chem Biol. 2015 Aug;27:52-63. doi: 10.1016/j.cbpa.2015.06.005. Epub 2015 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验