Suppr超能文献

用于量子计算的广义幺正耦合簇波函数

Generalized Unitary Coupled Cluster Wave functions for Quantum Computation.

作者信息

Lee Joonho, Huggins William J, Head-Gordon Martin, Whaley K Birgitta

机构信息

Department of Chemistry , University of California , Berkeley , California 94720 , United States.

Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.

出版信息

J Chem Theory Comput. 2019 Jan 8;15(1):311-324. doi: 10.1021/acs.jctc.8b01004. Epub 2018 Dec 17.

Abstract

We introduce a unitary coupled-cluster (UCC) ansatz termed k-UpCCGSD that is based on a family of sparse generalized doubles operators, which provides an affordable and systematically improvable unitary coupled-cluster wave function suitable for implementation on a near-term quantum computer. k-UpCCGSD employs k products of the exponential of pair coupled-cluster double excitation operators (pCCD), together with generalized single excitation operators. We compare its performance in both efficiency of implementation and accuracy with that of the generalized UCC ansatz employing the full generalized single and double excitation operators (UCCGSD), as well as with the standard ansatz employing only single and double excitations (UCCSD). k-UpCCGSD is found to show the best scaling for quantum computing applications, requiring a circuit depth of [Formula: see text], compared with [Formula: see text] for UCCGSD, and [Formula: see text] for UCCSD, where N is the number of spin orbitals and η is the number of electrons. We analyzed the accuracy of these three ansätze by making classical benchmark calculations on the ground state and the first excited state of H (STO-3G, 6-31G), HO (STO-3G), and N (STO-3G), making additional comparisons to conventional coupled cluster methods. The results for ground states show that k-UpCCGSD offers a good trade-off between accuracy and cost, achieving chemical accuracy for lower cost of implementation on quantum computers than both UCCGSD and UCCSD. UCCGSD is also found to be more accurate than UCCSD but at a greater cost for implementation. Excited states are calculated with an orthogonally constrained variational quantum eigensolver approach. This is seen to generally yield less accurate energies than for the corresponding ground states. We demonstrate that using a specialized multideterminantal reference state constructed from classical linear response calculations allows these excited state energetics to be improved.

摘要

我们引入了一种称为k-UpCCGSD的幺正耦合簇(UCC)近似,它基于一族稀疏广义双激发算符,提供了一种适用于在近期量子计算机上实现的、经济且可系统改进的幺正耦合簇波函数。k-UpCCGSD采用了k个成对耦合簇双激发算符(pCCD)的指数乘积,以及广义单激发算符。我们将其在实现效率和精度方面的性能与采用全广义单双激发算符的广义UCC近似(UCCGSD)以及仅采用单双激发的标准近似(UCCSD)进行了比较。结果发现,k-UpCCGSD在量子计算应用中表现出最佳的缩放比例,其电路深度为[公式:见原文],相比之下,UCCGSD为[公式:见原文],UCCSD为[公式:见原文],其中N是自旋轨道数,η是电子数。我们通过对H(STO-3G,6-31G)、HO(STO-3G)和N(STO-3G)的基态和第一激发态进行经典基准计算,分析了这三种近似的精度,并与传统耦合簇方法进行了额外比较。基态结果表明,k-UpCCGSD在精度和成本之间实现了良好的平衡,在量子计算机上实现成本较低的情况下达到了化学精度,优于UCCGSD和UCCSD。还发现UCCGSD比UCCSD更准确,但实现成本更高。激发态采用正交约束变分量子本征求解器方法进行计算。结果表明,与相应的基态相比,激发态能量的计算精度通常较低。我们证明,使用由经典线性响应计算构建的专门多行列式参考态可以提高这些激发态能量的计算精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验