Suppr超能文献

基因医学治疗与基因组手术的革命。

Revolution in Gene Medicine Therapy and Genome Surgery.

作者信息

Jiang David J, Xu Christine L, Tsang Stephen H

机构信息

Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, 10032, USA.

Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 10032, USA.

出版信息

Genes (Basel). 2018 Nov 26;9(12):575. doi: 10.3390/genes9120575.

Abstract

Recently, there have been revolutions in the development of both gene medicine therapy and genome surgical treatments for inherited disorders. Much of this progress has been centered on hereditary retinal dystrophies, because the eye is an immune-privileged and anatomically ideal target. Gene therapy treatments, already demonstrated to be safe and efficacious in numerous clinical trials, are benefitting from the development of new viral vectors, such as dual and triple adeno-associated virus (AAV) vectors. CRISPR/Cas9, which revolutionized the field of gene editing, is being adapted into more precise "high fidelity" and catalytically dead variants. Newer CRISPR endonucleases, such as CjCas9 and Cas12a, are generating excitement in the field as well. Stem cell therapy has emerged as a promising alternative, allowing human embryo-derived stem cells and induced pluripotent stem cells to be edited precisely in vitro and then reintroduced into the body. This article highlights recent progress made in gene therapy and genome surgery for retinal disorders, and it provides an update on precision medicine Food and Drug Administration (FDA) treatment trials.

摘要

最近,在遗传性疾病的基因药物治疗和基因组手术治疗的发展方面都发生了变革。这些进展大多集中在遗传性视网膜营养不良症上,因为眼睛是一个免疫赦免且解剖结构理想的靶点。基因治疗在众多临床试验中已被证明是安全有效的,并且受益于新型病毒载体的开发,比如双腺相关病毒(AAV)载体和三腺相关病毒(AAV)载体。CRISPR/Cas9彻底改变了基因编辑领域,正被改造成更精确的“高保真”和催化失活变体。新型CRISPR核酸内切酶,如CjCas9和Cas12a,也在该领域引发了关注。干细胞疗法已成为一种有前景的替代方法,使得人类胚胎干细胞和诱导多能干细胞能够在体外被精确编辑,然后重新引入体内。本文重点介绍了视网膜疾病在基因治疗和基因组手术方面取得的最新进展,并提供了精准医学食品药品监督管理局(FDA)治疗试验的最新情况。

相似文献

1
Revolution in Gene Medicine Therapy and Genome Surgery.
Genes (Basel). 2018 Nov 26;9(12):575. doi: 10.3390/genes9120575.
2
3
Comparison of CRISPR/Cas Endonucleases for Retinal Gene Editing.
Front Cell Neurosci. 2020 Sep 10;14:570917. doi: 10.3389/fncel.2020.570917. eCollection 2020.
4
Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine.
Genes Dis. 2023 Mar 25;11(1):268-282. doi: 10.1016/j.gendis.2023.02.027. eCollection 2024 Jan.
6
CRISPR Cas9 based genome editing in inherited retinal dystrophies.
Ophthalmic Genet. 2021 Aug;42(4):365-374. doi: 10.1080/13816810.2021.1904421. Epub 2021 Apr 6.
7
Personalised genome editing - The future for corneal dystrophies.
Prog Retin Eye Res. 2018 Jul;65:147-165. doi: 10.1016/j.preteyeres.2018.01.004. Epub 2018 Jan 31.
8
genome editing in animals using AAV-CRISPR system: applications to translational research of human disease.
F1000Res. 2017 Dec 20;6:2153. doi: 10.12688/f1000research.11243.1. eCollection 2017.
9
Efficient correction of variants by CRISPR-Cas9 in hiPSCs derived from Stargardt disease patients.
Mol Ther Nucleic Acids. 2023 Mar 3;32:64-79. doi: 10.1016/j.omtn.2023.02.032. eCollection 2023 Jun 13.
10
Harnessing the Potential of Human Pluripotent Stem Cells and Gene Editing for the Treatment of Retinal Degeneration.
Curr Stem Cell Rep. 2017;3(2):112-123. doi: 10.1007/s40778-017-0078-4. Epub 2017 Apr 18.

引用本文的文献

3
Syndecan-4 Mediates the Cellular Entry of Adeno-Associated Virus 9.
Int J Mol Sci. 2023 Feb 5;24(4):3141. doi: 10.3390/ijms24043141.
5
Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair.
Front Biosci (Landmark Ed). 2022 May 30;27(6):169. doi: 10.31083/j.fbl2706169.
6
CRISPR/Cas therapeutic strategies for autosomal dominant disorders.
J Clin Invest. 2022 May 2;132(9). doi: 10.1172/JCI158287.
7
[Rapid screening of single guide RNA targeting pig genome and the harvesting of monoclonal cells by microarray seal].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Feb 25;38(1):111-121. doi: 10.7507/1001-5515.202006032.
8
Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review).
Mol Med Rep. 2021 Jun;23(6). doi: 10.3892/mmr.2021.12056. Epub 2021 Apr 13.
9
Microglia Activation and Inflammation During the Death of Mammalian Photoreceptors.
Annu Rev Vis Sci. 2020 Sep 15;6:149-169. doi: 10.1146/annurev-vision-121219-081730.
10
Differences in Intraretinal Pigment Migration Across Inherited Retinal Dystrophies.
Am J Ophthalmol. 2020 Sep;217:252-260. doi: 10.1016/j.ajo.2020.05.010. Epub 2020 May 20.

本文引用的文献

1
CRISPR/Cas9 genome surgery for retinal diseases.
Drug Discov Today Technol. 2018 Aug;28:23-32. doi: 10.1016/j.ddtec.2018.05.001. Epub 2018 Jun 18.
2
Splice-Modulating Oligonucleotide QR-110 Restores CEP290 mRNA and Function in Human c.2991+1655A>G LCA10 Models.
Mol Ther Nucleic Acids. 2018 Sep 7;12:730-740. doi: 10.1016/j.omtn.2018.07.010. Epub 2018 Jul 23.
3
Translation of CRISPR Genome Surgery to the Bedside for Retinal Diseases.
Front Cell Dev Biol. 2018 May 23;6:46. doi: 10.3389/fcell.2018.00046. eCollection 2018.
4
Applications of CRISPR-Based Genome Editing in the Retina.
Front Cell Dev Biol. 2018 May 14;6:53. doi: 10.3389/fcell.2018.00053. eCollection 2018.
5
Gene therapy and genome surgery in the retina.
J Clin Invest. 2018 Jun 1;128(6):2177-2188. doi: 10.1172/JCI120429.
6
Clustered Regularly Interspaced Short Palindromic Repeats-Based Genome Surgery for the Treatment of Autosomal Dominant Retinitis Pigmentosa.
Ophthalmology. 2018 Sep;125(9):1421-1430. doi: 10.1016/j.ophtha.2018.04.001. Epub 2018 May 11.
8
A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration.
Sci Transl Med. 2018 Apr 4;10(435). doi: 10.1126/scitranslmed.aao4097.
9
Stem Cell Treatment in Retinal Diseases: Recent Developments.
Turk J Ophthalmol. 2018 Feb;48(1):33-38. doi: 10.4274/tjo.89972. Epub 2018 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验