Suppr超能文献

基于加权基因共表达网络分析的分选连接蛋白 10 弱表达对胃腺癌预后价值的研究。

Prognostic value of sorting nexin 10 weak expression in stomach adenocarcinoma revealed by weighted gene co-expression network analysis.

机构信息

Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China.

Department of Emergency, Sheng Jing Hospital of China Medical University, Shenyang 110042, Liaoning Province, China.

出版信息

World J Gastroenterol. 2018 Nov 21;24(43):4906-4919. doi: 10.3748/wjg.v24.i43.4906.

Abstract

AIM

To detect significant clusters of co-expressed genes associated with tumorigenesis that might help to predict stomach adenocarcinoma (SA) prognosis.

METHODS

The Cancer Genome Atlas database was used to obtain RNA sequences as well as complete clinical data of SA and adjacent normal tissues from patients. Weighted gene co-expression network analysis (WGCNA) was used to investigate the meaningful module along with hub genes. Expression of hub genes was analyzed in 362 paraffin-embedded SA biopsy tissues by immunohistochemical staining. Patients were classified into two groups (according to expression of hub genes): Weak expression and over-expression groups. Correlation of biomarkers with clinicopathological factors indicated patient survival.

RESULTS

Whole genome expression level screening identified 6,231 differentially expressed genes. Twenty-four co-expressed gene modules were identified using WGCNA. Pearson's correlation analysis showed that the tan module was the most relevant to tumor stage ( = 0.24, = 7 × 10). In addition, we detected sorting nexin (SNX)10 as the hub gene of the tan module. SNX10 expression was linked to T category ( = 0.042, χ = 8.708), N category ( = 0.000, χ = 18.778), TNM stage ( = 0.001, χ = 16.744) as well as tumor differentiation ( = 0.000, χ = 251.930). Patients with high SNX10 expression tended to have longer disease-free survival (DFS; 44.97 mo 33.85 mo, = 0.000) as well as overall survival (OS; 49.95 40.84 mo, = 0.000) in univariate analysis. Multivariate analysis showed that dismal prognosis could be precisely predicted clinicopathologically using SNX10 [DFS: = 0.014, hazard ratio (HR) = 0.698, 95% confidence interval (CI): 0.524-0.930, OS: = 0.017, HR = 0.704, 95%CI: 0.528-0.940].

CONCLUSION

This study provides a new technique for screening prognostic biomarkers of SA. Weak expression of SNX10 is linked to poor prognosis, and is a suitable prognostic biomarker of SA.

摘要

目的

检测与肿瘤发生相关的显著共表达基因簇,以帮助预测胃腺癌 (SA) 的预后。

方法

利用癌症基因组图谱数据库获取来自患者的 SA 及相邻正常组织的 RNA 序列及完整临床资料。采用加权基因共表达网络分析(WGCNA)分析有意义的模块和枢纽基因。通过免疫组织化学染色分析 362 例石蜡包埋 SA 活检组织中枢纽基因的表达。根据枢纽基因的表达将患者分为两组(弱表达组和过表达组)。分析生物标志物与临床病理因素的相关性以预测患者的生存情况。

结果

全基因组表达水平筛选出 6231 个差异表达基因。WGCNA 鉴定出 24 个共表达基因模块。Pearson 相关分析显示,tan 模块与肿瘤分期相关性最强( = 0.24, = 7×10)。此外,我们检测到分选连接蛋白(SNX)10 为 tan 模块的枢纽基因。SNX10 的表达与 T 分期( = 0.042,χ = 8.708)、N 分期( = 0.000,χ = 18.778)、TNM 分期( = 0.001,χ = 16.744)和肿瘤分化( = 0.000,χ = 251.930)相关。SNX10 高表达的患者无病生存期(DFS;44.97 mo 33.85 mo, = 0.000)和总生存期(OS;49.95 40.84 mo, = 0.000)更长,这在单因素分析中得到证实。多因素分析显示,SNX10 可精确预测患者的不良预后[DFS: = 0.014,风险比(HR)= 0.698,95%置信区间(CI):0.524-0.930,OS: = 0.017,HR = 0.704,95%CI:0.528-0.940]。

结论

本研究为筛选 SA 预后生物标志物提供了一种新方法。SNX10 低表达与预后不良相关,是 SA 的一种合适的预后生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8c7/6250920/383714425e4b/WJG-24-4906-g002.jpg

相似文献

5
Co-expression Network Analysis Identified COL8A1 Is Associated with the Progression and Prognosis in Human Colon Adenocarcinoma.
Dig Dis Sci. 2018 May;63(5):1219-1228. doi: 10.1007/s10620-018-4996-5. Epub 2018 Mar 1.
6
Identification of gene modules and hub genes in colon adenocarcinoma associated with pathological stage based on WGCNA analysis.
Cancer Genet. 2020 Apr;242:1-7. doi: 10.1016/j.cancergen.2020.01.052. Epub 2020 Feb 1.
7
Differential gene expression profiling of gastric intraepithelial neoplasia and early-stage adenocarcinoma.
World J Gastroenterol. 2014 Dec 21;20(47):17883-93. doi: 10.3748/wjg.v20.i47.17883.
8
Myofibrillogenesis regulator-1 overexpression is associated with poor prognosis of gastric cancer patients.
World J Gastroenterol. 2012 Oct 14;18(38):5434-41. doi: 10.3748/wjg.v18.i38.5434.
9
Clinicopathological and prognostic significance of aberrant Arpin expression in gastric cancer.
World J Gastroenterol. 2017 Feb 28;23(8):1450-1457. doi: 10.3748/wjg.v23.i8.1450.
10
Prognostic values of GPNMB identified by mining TCGA database and STAD microenvironment.
Aging (Albany NY). 2020 Aug 21;12(16):16238-16254. doi: 10.18632/aging.103646.

引用本文的文献

1
Loss of Sorting Nexin 10 Accelerates KRAS-Induced Pancreatic Tumorigenesis.
Cancer Res Commun. 2025 Sep 1;5(9):1541-1551. doi: 10.1158/2767-9764.CRC-25-0168.
4
Identification of Hub Genes of Lung Adenocarcinoma Based on Weighted Gene Co-Expression Network in Chinese Population.
Pathol Oncol Res. 2022 Aug 10;28:1610455. doi: 10.3389/pore.2022.1610455. eCollection 2022.
5
LncRNA PCGEM1 in Human Cancers: Functions, Mechanisms and Promising Clinical Utility.
Front Oncol. 2022 Feb 21;12:847745. doi: 10.3389/fonc.2022.847745. eCollection 2022.
6
Identification of Lymph Node Metastasis-Related Key Genes and Prognostic Risk Model in Bladder Cancer by Co-Expression Analysis.
Front Mol Biosci. 2021 Jul 22;8:633299. doi: 10.3389/fmolb.2021.633299. eCollection 2021.
7
9
Identification of novel candidate biomarkers for pancreatic adenocarcinoma based on TCGA cohort.
Aging (Albany NY). 2021 Feb 11;13(4):5698-5717. doi: 10.18632/aging.202494.
10
Integrated profiling identifies SLC5A6 and MFAP2 as novel diagnostic and prognostic biomarkers in gastric cancer patients.
Int J Oncol. 2020 Feb;56(2):460-469. doi: 10.3892/ijo.2019.4944. Epub 2019 Dec 16.

本文引用的文献

3
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics.
Cell. 2018 Apr 5;173(2):400-416.e11. doi: 10.1016/j.cell.2018.02.052.
7
New agents on the horizon in gastric cancer.
Ann Oncol. 2017 Aug 1;28(8):1767-1775. doi: 10.1093/annonc/mdx051.
8
WGCNA Application to Proteomic and Metabolomic Data Analysis.
Methods Enzymol. 2017;585:135-158. doi: 10.1016/bs.mie.2016.09.016. Epub 2016 Dec 15.
9
Cancer Statistics, 2017.
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
10
How Can Gastric Cancer Molecular Profiling Guide Future Therapies?
Trends Mol Med. 2016 Jul;22(7):534-544. doi: 10.1016/j.molmed.2016.05.004. Epub 2016 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验