Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China.
ArteryFlow Technology Co., Ltd., Hangzhou, China.
Eur Radiol. 2024 Mar;34(3):1624-1634. doi: 10.1007/s00330-023-10053-z. Epub 2023 Sep 1.
The Alberta Stroke Program Early CT Score (ASPECTS) is a semi-quantitative method to evaluate the severity of early ischemic change on non-contrast computed tomography (NCCT) in patients with acute ischemic stroke (AIS). In this work, we propose an automated ASPECTS method based on large cohort of data and machine learning.
For this study, we collected 3626 NCCT cases from multiple centers and annotated directly on this dataset by neurologists. Based on image analysis and machine learning methods, we constructed a two-stage machine learning model. The validity and reliability of this automated ASPECTS method were tested on an independent external validation set of 300 cases. Statistical analyses on the total ASPECTS, dichotomized ASPECTS, and region-level ASPECTS were presented.
On an independent external validation set of 300 cases, for the total ASPECTS results, the intraclass correlation coefficient between automated ASPECTS and expert-rated was 0.842. The agreement between ASPECTS threshold of ≥ 6 versus < 6 using a dichotomized method was moderate (κ = 0.438, 0.391-0.477), and the detection rate (sensitivity) was 86.5% for patients with ASPECTS threshold of ≥ 6. Compared with the results of previous studies, our method achieved a slight lead in sensitivity (67.8%) and AUC (0.845), with comparable accuracy (78.9%) and specificity (81.2%).
The proposed automated ASPECTS method driven by a large cohort of NCCT images performed equally well compared with expert-rated ASPECTS. This work further demonstrates the validity and reliability of automated ASPECTS evaluation method.
The automated ASPECTS method proposed by this study may help AIS patients to receive rapid intervention, but should not be used as a stand-alone diagnostic basis.
NCCT-based manual ASPECTS scores were poorly consistent. Machine learning can automate the ASPECTS scoring process. Machine learning model design based on large cohort data can effectively improve the consistency of ASPECTS scores.
阿尔伯塔卒中项目早期 CT 评分(ASPECTS)是一种半定量方法,用于评估急性缺血性卒中(AIS)患者非对比 CT(NCCT)上早期缺血性改变的严重程度。在这项工作中,我们提出了一种基于大量数据和机器学习的自动化 ASPECTS 方法。
为此研究,我们从多个中心收集了 3626 例 NCCT 病例,并由神经科医生直接在该数据集上进行注释。基于图像分析和机器学习方法,我们构建了一个两阶段机器学习模型。该自动化 ASPECTS 方法的有效性和可靠性在 300 例独立外部验证集上进行了测试。呈现了总 ASPECTS、二分法 ASPECTS 和区域水平 ASPECTS 的统计分析。
在 300 例独立外部验证集中,对于总 ASPECTS 结果,自动化 ASPECTS 与专家评分之间的组内相关系数为 0.842。使用二分法的 ASPECTS 阈值≥6 与<6 的一致性为中等(κ=0.438,0.391-0.477),ASPECTS 阈值≥6 的患者的检出率(灵敏度)为 86.5%。与之前的研究结果相比,我们的方法在灵敏度(67.8%)和 AUC(0.845)方面略有优势,准确性(78.9%)和特异性(81.2%)相当。
由大量 NCCT 图像驱动的提出的自动化 ASPECTS 方法与专家评分的 ASPECTS 表现相当。这项工作进一步证明了自动化 ASPECTS 评估方法的有效性和可靠性。
本研究提出的自动化 ASPECTS 方法可以帮助 AIS 患者接受快速干预,但不应作为独立的诊断依据。
基于 NCCT 的手动 ASPECTS 评分一致性较差。机器学习可以实现 ASPECTS 评分的自动化。基于大量队列数据的机器学习模型设计可以有效地提高 ASPECTS 评分的一致性。