Suppr超能文献

一种用于透射电磁重建的局域协议滤波算法。

A Local Agreement Filtering Algorithm for Transmission EM Reconstructions.

机构信息

Section for Structural Biology, Department of Medicine, Imperial College Road, South Kensington, London SW7 2BB, United Kingdom.

Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.

出版信息

J Struct Biol. 2019 Jan 1;205(1):30-40. doi: 10.1016/j.jsb.2018.11.011. Epub 2018 Nov 29.

Abstract

We present LAFTER, an algorithm for de-noising single particle reconstructions from cryo-EM. Single particle analysis entails the reconstruction of high-resolution volumes from tens of thousands of particle images with low individual signal-to-noise. Imperfections in this process result in substantial variations in the local signal-to-noise ratio within the resulting reconstruction, complicating the interpretation of molecular structure. An effective local de-noising filter could therefore improve interpretability and maximise the amount of useful information obtained from cryo-EM maps. LAFTER is a local de-noising algorithm based on a pair of serial real-space filters. It compares independent half-set reconstructions to identify and retain shared features that have power greater than the noise. It is capable of recovering features across a wide range of signal-to-noise ratios, and we demonstrate recovery of the strongest features at Fourier shell correlation (FSC) values as low as 0.144 over a 256-voxel cube. A fast and computationally efficient implementation of LAFTER is freely available. We also propose a new way to evaluate the effectiveness of real-space filters for noise suppression, based on the correspondence between two FSC curves: 1) the FSC between the filtered and unfiltered volumes, and 2) C, the FSC between the unfiltered volume and a hypothetical noiseless volume, which can readily be estimated from the FSC between two half-set reconstructions.

摘要

我们提出了 LAFTER,这是一种用于从冷冻电镜中去除单粒子重建的算法。单粒子分析需要从数万张粒子图像重建高分辨率体积,而每张图像的信号噪声比都很低。这个过程中的不完美会导致重建中局部信号噪声比的显著变化,从而使分子结构的解释变得复杂。因此,有效的局部去噪滤波器可以提高可解释性,并最大限度地从冷冻电镜图谱中获取有用信息。LAFTER 是一种基于一对串行实空间滤波器的局部去噪算法。它比较独立的半集重建,以识别和保留具有大于噪声的功率的共享特征。它能够在广泛的信号噪声比范围内恢复特征,并且我们在 256 体素立方体内以低至 0.144 的傅立叶壳相关 (FSC) 值恢复了最强特征。LAFTER 的快速和计算效率高的实现是免费提供的。我们还提出了一种基于两条 FSC 曲线之间对应关系的评估实空间滤波器噪声抑制效果的新方法:1)过滤和未过滤体积之间的 FSC,以及 2)C,未过滤体积和假设无噪声体积之间的 FSC,可以从两个半集重建之间的 FSC 很容易地估计出来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85cd/6351148/9a72d9cdcd08/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验