Suppr超能文献

基于似然的信号和噪声分析用于将模型对接入冷冻电镜图谱。

Likelihood-based signal and noise analysis for docking of models into cryo-EM maps.

机构信息

Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom.

New Mexico Consortium, Los Alamos National Laboratory, 100 Entrada Drive, Los Alamos, NM 87544, USA.

出版信息

Acta Crystallogr D Struct Biol. 2023 Apr 1;79(Pt 4):271-280. doi: 10.1107/S2059798323001596. Epub 2023 Mar 15.

Abstract

Fast, reliable docking of models into cryo-EM maps requires understanding of the errors in the maps and the models. Likelihood-based approaches to errors have proven to be powerful and adaptable in experimental structural biology, finding applications in both crystallography and cryo-EM. Indeed, previous crystallographic work on the errors in structural models is directly applicable to likelihood targets in cryo-EM. Likelihood targets in Fourier space are derived here to characterize, based on the comparison of half-maps, the direction- and resolution-dependent variation in the strength of both signal and noise in the data. Because the signal depends on local features, the signal and noise are analysed in local regions of the cryo-EM reconstruction. The likelihood analysis extends to prediction of the signal that will be achieved in any docking calculation for a model of specified quality and completeness. A related calculation generalizes a previous measure of the information gained by making the cryo-EM reconstruction.

摘要

快速、可靠地将模型对接至冷冻电镜(cryo-EM)映射图需要理解映射图和模型中的误差。基于似然的误差处理方法在实验结构生物学中被证明是强大且适应性强的,在晶体学和 cryo-EM 中都有应用。事实上,以前在结构模型误差方面的晶体学工作直接适用于 cryo-EM 中的似然目标。这里推导出傅里叶空间中的似然目标,以便基于半映射图的比较,描述数据中信号和噪声的强度在方向和分辨率上的变化。由于信号取决于局部特征,因此在 cryo-EM 重建的局部区域中分析信号和噪声。似然分析扩展到对任何特定质量和完整性的模型对接计算中可实现的信号的预测。相关计算推广了以前对通过 cryo-EM 重建获得的信息量的度量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53db/10071565/8bc1bcccc80c/d-79-00271-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验