Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France; Department of Adaptations du Vivant, UMR 7179-CNRS/MNHN, MECADEV, Paris, 75321, France; Animal Postcranial Evolution Laboratory, Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, United Kingdom.
Institute of Movement Sciences, UMR 7287-CNRS, Aix-Marseille University, Marseille, 13288, France.
J Hum Evol. 2018 Dec;125:106-121. doi: 10.1016/j.jhevol.2018.10.001. Epub 2018 Nov 14.
Differences in grip techniques used across primates are usually attributed to variation in thumb-finger proportions and muscular anatomy of the hand. However, this cause-effect relationship is not fully understood because little is known about the biomechanical functioning and mechanical loads (e.g., muscle or joint forces) of the non-human primate hand compared to that of humans during object manipulation. This study aims to understand the importance of hand proportions on the use of different grip strategies used by humans, extant great apes (bonobos, gorillas and orangutans) and, potentially, fossil hominins (Homo naledi and Australopithecus sediba) using a musculoskeletal model of the hand. Results show that certain grips are more challenging for some species, particularly orangutans, than others, such that they require stronger muscle forces for a given range of motion. Assuming a human-like range of motion at each hand joint, simulation results show that H. naledi and A. sediba had the biomechanical potential to use the grip techniques considered important for stone tool-related behaviors in humans. These musculoskeletal simulation results shed light on the functional consequences of the different hand proportions among extant and extinct hominids and the different manipulative abilities found in humans and great apes.
灵长类动物之间抓握技术的差异通常归因于拇指-手指比例和手部肌肉解剖结构的变化。然而,由于人们对非人类灵长类动物的手部生物力学功能和机械负荷(例如肌肉或关节力)的了解甚少,与人类在物体操作期间的了解相比,这种因果关系尚未完全理解。本研究旨在使用手部的肌肉骨骼模型来理解手部比例对手部抓握策略的重要性,这些抓握策略用于人类、现生灵长类动物(倭黑猩猩、大猩猩和猩猩),以及可能的化石原始人(纳莱迪人和南方古猿 sediba)。结果表明,某些抓握方式对某些物种(尤其是猩猩)来说比其他物种更具挑战性,因为它们需要更强的肌肉力量才能实现给定的运动范围。假设每个手部关节都具有类似人类的运动范围,模拟结果表明,H. naledi 和 A. sediba 具有生物力学潜力,可以使用被认为与人类石器相关行为有关的抓握技术。这些肌肉骨骼模拟结果揭示了现生灵长类动物和已灭绝原始人之间不同手部比例的功能后果,以及人类和大型类人猿之间不同的操作能力。