Suppr超能文献

基于静息态功能磁共振成像的大规模格兰杰因果分析对HIV相关神经认知障碍的识别与功能特征研究

Identification and functional characterization of HIV-associated neurocognitive disorders with large-scale Granger causality analysis on resting-state functional MRI.

作者信息

Chockanathan Udaysankar, DSouza Adora M, Abidin Anas Z, Schifitto Giovanni, Wismüller Axel

机构信息

Department of Biochemistry and Biophysics, University of Rochester, NY, USA.

Department of Electrical Engineering, University of Rochester, NY, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2018 Feb;10575. doi: 10.1117/12.2293888. Epub 2018 Feb 27.

Abstract

Resting-state functional MRI (rs-fMRI), coupled with advanced multivariate time-series analysis methods such as Granger causality, is a promising tool for the development of novel functional connectivity biomarkers of neurologic and psychiatric disease. Recently large-scale Granger causality (lsGC) has been proposed as an alternative to conventional Granger causality (cGC) that extends the scope of robust Granger causal analyses to high-dimensional systems such as the human brain. In this study, lsGC and cGC were comparatively evaluated on their ability to capture neurologic damage associated with HIV-associated neurocognitive disorders (HAND). Functional brain network models were constructed from rs-fMRI data collected from a cohort of HIV and HIV subjects. Graph theoretic properties of the resulting networks were then used to train a support vector machine (SVM) model to predict clinically relevant parameters, such as HIV status and neuropsychometric (NP) scores. For the HIV classification task, lsGC, which yielded a peak area under the receiver operating characteristic curve (AUC) of 0.83, significantly outperformed cGC, which yielded a peak AUC of 0.61, at all parameter settings tested. For the NP score regression task, lsGC, with a minimum mean squared error (MSE) of 0.75, significantly outperformed cGC, with a minimum MSE of 0.84 ( < 0.001, one-tailed paired -test). These results show that, at optimal parameter settings, lsGC is better able to capture functional brain connectivity correlates of HAND than cGC. However, given the substantial variation in the performance of the two methods at different parameter settings, particularly for the regression task, improved parameter selection criteria are necessary and constitute an area for future research.

摘要

静息态功能磁共振成像(rs-fMRI)与诸如格兰杰因果关系等先进的多变量时间序列分析方法相结合,是开发神经和精神疾病新型功能连接生物标志物的一种有前景的工具。最近,大规模格兰杰因果关系(lsGC)被提出作为传统格兰杰因果关系(cGC)的替代方法,它将稳健格兰杰因果分析的范围扩展到了诸如人类大脑这样的高维系统。在本研究中,对lsGC和cGC捕捉与HIV相关神经认知障碍(HAND)相关的神经损伤的能力进行了比较评估。从一组HIV感染者和非HIV感染者收集的rs-fMRI数据构建了功能性脑网络模型。然后,利用所得网络的图论属性训练支持向量机(SVM)模型,以预测临床相关参数,如HIV状态和神经心理测量(NP)分数。对于HIV分类任务,在所有测试参数设置下,lsGC的受试者操作特征曲线下面积(AUC)峰值为0.83,显著优于cGC,cGC的峰值AUC为0.61。对于NP分数回归任务,lsGC的最小均方误差(MSE)为0.75,显著优于cGC,cGC的最小MSE为0.84(<0.001,单尾配对检验)。这些结果表明,在最佳参数设置下,lsGC比cGC更能捕捉HAND的功能性脑连接相关性。然而,鉴于两种方法在不同参数设置下的性能存在显著差异,尤其是对于回归任务,需要改进参数选择标准,这构成了未来研究的一个领域。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验