Suppr超能文献

使用静息态功能磁共振成像的大规模格兰杰因果分析识别与HIV相关的神经认知障碍

Identifying HIV Associated Neurocognitive Disorder Using Large-Scale Granger Causality Analysis on Resting-State Functional MRI.

作者信息

DSouza Adora M, Abidin Anas Z, Leistritz Lutz, Wismüller Axel

机构信息

Department of Electrical Engineering, University of Rochester, NY, USA.

Department of Biomedical Engineering, University of Rochester, NY, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2017 Feb;10133. doi: 10.1117/12.2254690.

Abstract

We investigate the applicability of large-scale Granger Causality (lsGC) for extracting a measure of multivariate information flow between pairs of regional brain activities from resting-state functional MRI (fMRI) and test the effectiveness of these measures for predicting a disease state. Such pairwise multivariate measures of interaction provide high-dimensional representations of connectivity profiles for each subject and are used in a machine learning task to distinguish between healthy controls and individuals presenting with symptoms of HIV Associated Neurocognitive Disorder (HAND). Cognitive impairment in several domains can occur as a result of HIV infection of the central nervous system. The current paradigm for assessing such impairment is through neuropsychological testing. With fMRI data analysis, we aim at non-invasively capturing differences in brain connectivity patterns between healthy subjects and subjects presenting with symptoms of HAND. To classify the extracted interaction patterns among brain regions, we use a prototype-based learning algorithm called Generalized Matrix Learning Vector Quantization (GMLVQ). Our approach to characterize connectivity using lsGC followed by GMLVQ for subsequent classification yields good prediction results with an accuracy of 87% and an area under the ROC curve (AUC) of up to 0.90. We obtain a statistically significant improvement (<0.01) over a conventional Granger causality approach (accuracy = 0.76, AUC = 0.74). High accuracy and AUC values using our multivariate method to connectivity analysis suggests that our approach is able to better capture changes in interaction patterns between different brain regions when compared to conventional Granger causality analysis known from the literature.

摘要

我们研究大规模格兰杰因果关系(lsGC)在从静息态功能磁共振成像(fMRI)中提取区域脑活动对之间的多变量信息流测量方面的适用性,并测试这些测量在预测疾病状态方面的有效性。这种成对的多变量相互作用测量为每个受试者提供了连接性概况的高维表示,并用于机器学习任务中,以区分健康对照者和出现与HIV相关神经认知障碍(HAND)症状的个体。中枢神经系统的HIV感染可能导致多个领域的认知障碍。目前评估这种障碍的范式是通过神经心理学测试。通过fMRI数据分析,我们旨在非侵入性地捕捉健康受试者和出现HAND症状的受试者之间脑连接模式的差异。为了对脑区之间提取的相互作用模式进行分类,我们使用一种基于原型的学习算法,称为广义矩阵学习向量量化(GMLVQ)。我们使用lsGC表征连接性,然后使用GMLVQ进行后续分类的方法产生了良好的预测结果,准确率为87%,ROC曲线下面积(AUC)高达0.90。与传统的格兰杰因果关系方法(准确率 = 0.76,AUC = 0.74)相比,我们获得了具有统计学意义的改进(<0.01)。使用我们的多变量方法进行连接性分析得到的高精度和AUC值表明,与文献中已知的传统格兰杰因果关系分析相比,我们的方法能够更好地捕捉不同脑区之间相互作用模式的变化。

相似文献

本文引用的文献

8
Adaptive relevance matrices in learning vector quantization.学习向量量化中的自适应相关矩阵。
Neural Comput. 2009 Dec;21(12):3532-61. doi: 10.1162/neco.2009.11-08-908.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验