Suppr超能文献

检测和分析大脑活动的时空模式。

Detection and analysis of spatiotemporal patterns in brain activity.

机构信息

School of Physics, The University of Sydney, NSW, Australia.

ARC Centre of Excellence for Integrative Brain Function, The University of Sydney, NSW, Australia.

出版信息

PLoS Comput Biol. 2018 Dec 3;14(12):e1006643. doi: 10.1371/journal.pcbi.1006643. eCollection 2018 Dec.

Abstract

There is growing evidence that population-level brain activity is often organized into propagating waves that are structured in both space and time. Such spatiotemporal patterns have been linked to brain function and observed across multiple recording methodologies and scales. The ability to detect and analyze these patterns is thus essential for understanding the working mechanisms of neural circuits. Here we present a mathematical and computational framework for the identification and analysis of multiple classes of wave patterns in neural population-level recordings. By drawing a conceptual link between spatiotemporal patterns found in the brain and coherent structures such as vortices found in turbulent flows, we introduce velocity vector fields to characterize neural population activity. These vector fields are calculated for both phase and amplitude of oscillatory neural signals by adapting optical flow estimation methods from the field of computer vision. Based on these velocity vector fields, we then introduce order parameters and critical point analysis to detect and characterize a diverse range of propagating wave patterns, including planar waves, sources, sinks, spiral waves, and saddle patterns. We also introduce a novel vector field decomposition method that extracts the dominant spatiotemporal structures in a recording. This enables neural data to be represented by the activity of a small number of independent spatiotemporal modes, providing an alternative to existing dimensionality reduction techniques which separate space and time components. We demonstrate the capabilities of the framework and toolbox with simulated data, local field potentials from marmoset visual cortex and optical voltage recordings from whole mouse cortex, and we show that pattern dynamics are non-random and are modulated by the presence of visual stimuli. These methods are implemented in a MATLAB toolbox, which is freely available under an open-source licensing agreement.

摘要

越来越多的证据表明,群体水平的大脑活动通常组织为在空间和时间上都具有结构的传播波。这些时空模式与大脑功能有关,并在多种记录方法和尺度上都有观察到。因此,检测和分析这些模式的能力对于理解神经回路的工作机制至关重要。在这里,我们提出了一种数学和计算框架,用于识别和分析神经群体记录中的多种波模式。通过在大脑中发现的时空模式与诸如在湍流中发现的漩涡等相干结构之间建立概念联系,我们引入了速度矢量场来描述神经群体活动。这些矢量场是通过从计算机视觉领域的光流估计方法改编而来的,用于计算振荡神经信号的相位和幅度。基于这些速度矢量场,我们引入了序参量和临界点分析来检测和描述各种传播波模式,包括平面波、源、汇、螺旋波和鞍点模式。我们还引入了一种新的矢量场分解方法,该方法可提取记录中的主要时空结构。这使得神经数据可以由少数几个独立的时空模式的活动来表示,为现有的降维技术提供了一种替代方法,这些技术将空间和时间分量分开。我们用模拟数据、狨猴视觉皮层的局部场电位和整个小鼠皮层的光学电压记录来演示该框架和工具箱的功能,并表明模式动态是非随机的,并且受到视觉刺激的调制。这些方法在 MATLAB 工具箱中实现,并根据开源许可协议免费提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1c3/6292652/b35b7c03211e/pcbi.1006643.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验