Suppr超能文献

可生物降解的氨基酸基聚(酯胺),具有可调变的免疫调节性能,及其在糖尿病大鼠伤口的体外和体内愈合研究。

Biodegradable amino acid-based poly(ester amine) with tunable immunomodulating properties and their in vitro and in vivo wound healing studies in diabetic rats' wounds.

机构信息

School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853-4401, USA.

School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510640, China.

出版信息

Acta Biomater. 2019 Jan 15;84:114-132. doi: 10.1016/j.actbio.2018.11.053. Epub 2018 Nov 30.

Abstract

The objective of this study is to design a new family of biodegradable synthetic polymeric biomaterials for providing a tunable inhibition of macrophage's nitric oxide synthase (NOS) pathway. l-Arginine (Arg) is the common substrate for NOS and arginase. Both two metabolic pathways participate in the wound healing process. An impaired wound healing, such as diabetic or other chronic wounds is usually associated with an overproduction of NO by macrophages via the NOS pathway. In this study, a new family of l-nitroarginine (NOArg) based polyester amide (NOArg-PEA) and NOArg-Arg PEA copolymers (co-PEA) were designed and synthesized with different composition ratios. The NOArg-PEA and NOArg-Arg co-PEAs are biodegradable (more than 50% degradation in vitro in 4 days at 37 °C), biocompatible and did not activate the resting macrophage immune response per se. When classically activated or alternatively activated macrophages (CAM/AAM) were incubated with NOArg-PEA and NOArg-Arg co-PEAs, the treatments decreased the NO production of CAM, increased the arginase activity in both CAM and AAM, increased TGF-β1 production of CAM to various degrees and had no significant effect on TNF-α production. Diabetic rat models were used to evaluate the efficacy of NOArg-PEA and NOArg-Arg co-PEAs on wound healing. Diabetic rats treated with 2-NOArg-4 PEA, 2-NOArg-4-Arg-4 20/80, and 2-NOArg-4-Arg-4 50/50 biomaterials achieved 40%-80% faster-wound healing when compared with the control on day 7. The data from the histological and immunohistochemical analysis showed that the 2-NOArg-4-Arg-4 20/80 and 2-NOArg-4-Arg-4 50/50 treatments led to more AAM phenotypes (CD206) and arginase I production in wound tissue than the control during the first 7 days, i.e., suggesting pro-healing wound microenvironment with improved re-epithelialization of wound healing. A similar trend was retained until day 14. The 2-NOArg-4-Arg-4 20/80 and 2-NOArg-4-Arg-4 50/50 treatments also increased the collagen deposition and angiogenesis in the healing wound between day 7 and day 14. Both in vitro and in vivo data of this study showed that this new family of NOArg-Arg co-PEA biomaterials have the potential as viable alternatives for treating impaired wound healing, such as diabetic or other types of chronic wounds. STATEMENT OF SIGNIFICANCE: Diabetic or other chronic wounds is usually associated with an overproduction of NO and pro-inflammatory signals by macrophages. Arginine supplement or NOS inhibitors administration failed to achieve an expected improved wound healing because of the dynamic complexity of arginine catabolism, the difficulty in transition from pro-inflammatory to pro-healing, and the short-term efficacy. We designed and synthesized a new family of water-soluble and degradable nitroarginine-arginine polyester amides to rebalance NOS/arginase metabolism pathways of macrophages. They showed tunable immunomodulating properties in vitro. The in vivo studies were performed to evaluate their efficacy in accelerating the healing. These new biomaterials have the potential as viable alternatives for treating impaired wound healing. The general audience of Acta Biomaterialia should be interested in these findings.

摘要

本研究的目的是设计一系列新型可生物降解的合成聚合物生物材料,以实现对巨噬细胞一氧化氮合酶(NOS)途径的抑制作用的调控。精氨酸(Arg)是 NOS 和精氨酸酶的共同底物。这两种代谢途径都参与了伤口愈合过程。受损的伤口愈合,如糖尿病或其他慢性伤口,通常与巨噬细胞通过 NOS 途径过度产生 NO 有关。在本研究中,设计并合成了一系列新型基于 l-硝基精氨酸(NOArg)的聚酯酰胺(NOArg-PEA)和 NOArg-Arg 共聚酯(共 PEA),其组成比不同。NOArg-PEA 和 NOArg-Arg 共 PEA 是可生物降解的(在 37°C 下体外 4 天降解率超过 50%)、生物相容的,且本身不会激活静止巨噬细胞免疫反应。当经典激活或替代激活的巨噬细胞(CAM/AAM)与 NOArg-PEA 和 NOArg-Arg 共 PEA 孵育时,处理降低了 CAM 的 NO 产生,增加了 CAM 和 AAM 中的精氨酸酶活性,不同程度地增加了 CAM 中 TGF-β1 的产生,对 TNF-α 的产生没有显著影响。糖尿病大鼠模型用于评估 NOArg-PEA 和 NOArg-Arg 共 PEA 对伤口愈合的疗效。与对照组相比,在第 7 天,用 2-NOArg-4 PEA、2-NOArg-4-Arg-4 20/80 和 2-NOArg-4-Arg-4 50/50 生物材料治疗的糖尿病大鼠伤口愈合速度快 40%-80%。组织学和免疫组织化学分析的数据表明,在第 7 天内,与对照组相比,2-NOArg-4-Arg-4 20/80 和 2-NOArg-4-Arg-4 50/50 处理导致伤口组织中更多的 AAM 表型(CD206)和精氨酸酶 I 产生,即提示具有改善的伤口愈合微环境,促进伤口愈合的上皮化。这种趋势一直持续到第 14 天。在第 7 天至第 14 天之间,2-NOArg-4-Arg-4 20/80 和 2-NOArg-4-Arg-4 50/50 处理还增加了愈合伤口中的胶原蛋白沉积和血管生成。本研究的体内外数据表明,这种新型 NOArg-Arg 共 PEA 生物材料具有作为治疗受损伤口愈合(如糖尿病或其他类型的慢性伤口)的可行替代品的潜力。

意义

糖尿病或其他慢性伤口通常与巨噬细胞过度产生 NO 和促炎信号有关。由于精氨酸分解代谢的动态复杂性、从促炎到促愈合的转变困难以及短期疗效,精氨酸补充或 NOS 抑制剂的给药未能达到预期的改善伤口愈合效果。我们设计并合成了一系列新型水溶性和可降解的硝基精氨酸-精氨酸聚酯酰胺,以重新平衡巨噬细胞的 NOS/精氨酸酶代谢途径。它们在体外表现出可调节的免疫调节特性。进行了体内研究以评估它们在加速愈合方面的疗效。这些新型生物材料具有作为治疗受损伤口愈合的可行替代品的潜力。《生物材料学报》的普通读者应该对这些发现感兴趣。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验