The Ritchie Centre, Hudson Institute of Medical Research , Clayton 3168 , Australia.
Department of Obstetrics and Gynaecology , Monash University , Clayton 3168 , Australia.
Biomacromolecules. 2019 Jan 14;20(1):454-468. doi: 10.1021/acs.biomac.8b01661. Epub 2018 Dec 18.
The current urogynecological clinical meshes trigger unfavorable foreign body response which leads to graft failure in the long term. To overcome the present challenge, we applied a tissue engineering strategy using endometrial SUSD2+ mesenchymal stem cells (eMSCs) with high regenerative properties. This study delves deeper into foreign body response to SUSD2+ eMSC based degradable PLACL/gelatin nanofiber meshes using a mouse model targeted at understanding immunomodulation and mesh integration in the long term. Delivery of cells with nanofiber mesh provides a unique topography that enables entrapment of therapeutic cells for up to 6 weeks that promotes substantial cellular infiltration of host anti-inflammatory macrophages. As a result, degradation rate and tissue integration are highly impacted by eMSCs, revealing an unexpected level of implant integration over 6 weeks in vivo. From a clinical perspective, such immunomodulation may aid in overcoming the current challenges and provide an alternative to an unmet women's urogynecological health need.
当前的泌尿妇科临床用网片会引发不良的异物反应,导致移植物在长期使用后失效。为了克服这一现有挑战,我们应用了一种组织工程策略,使用具有高再生特性的子宫内膜 SUSD2+间充质干细胞(eMSCs)。本研究利用针对免疫调节和长期网片整合的小鼠模型,深入研究了基于 SUSD2+eMSC 的可降解 PLACL/明胶纳米纤维网片的异物反应。细胞与纳米纤维网片的共递送提供了独特的拓扑结构,可将治疗细胞捕获长达 6 周,从而促进宿主抗炎巨噬细胞的大量细胞浸润。结果,eMSCs 高度影响降解率和组织整合,在体内 6 周的时间内显示出出人意料的植入物整合水平。从临床角度来看,这种免疫调节可能有助于克服当前的挑战,并为满足女性泌尿妇科健康需求提供替代方案。