Eatson Jack L, Morgan Scott O, Horozov Tommy S, A Buzza D Martin
Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, Hull HU6 7RX, United Kingdom.
Department of Chemistry and Biochemistry, George William Gray Centre for Advanced Materials, University of Hull, Hull HU6 7RX, United Kingdom.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2401134121. doi: 10.1073/pnas.2401134121. Epub 2024 Aug 20.
In recent years, self-assembly has emerged as a powerful tool for fabricating functional materials. Since self-assembly is fundamentally determined by the particle interactions in the system, if we can gain full control over these interactions, it would open the door for creating functional materials by design. In this paper, we exploit capillary interactions between colloidal particles at liquid interfaces to create two-dimensional (2D) materials where particle interactions and self-assembly can be fully programmed using particle shape alone. Specifically, we consider colloidal particles which are polygonal plates with homogeneous surface chemistry and undulating edges as this particle geometry gives us precise and independent control over both short-range hard-core repulsions and longer-range capillary interactions. To illustrate the immense potential provided by our system for programming self-assembly, we use minimum energy calculations and Monte Carlo simulations to show that polygonal plates with different in-plane shapes (hexagons, truncated triangles, triangles, squares) and edge undulations of different multipolar order (hexapolar, octopolar, dodecapolar) can be used to create a rich variety of 2D structures, including hexagonal close-packed, honeycomb, Kagome, and quasicrystal lattices. Since the required particle shapes can be readily fabricated experimentally, we can use our colloidal system to control the entire process chain for materials design, from initial design and fabrication of the building blocks, to final assembly of the emergent 2D material.
近年来,自组装已成为制造功能材料的一种强大工具。由于自组装从根本上由系统中的粒子相互作用决定,因此如果我们能够完全控制这些相互作用,那么就为通过设计创造功能材料打开了大门。在本文中,我们利用液体界面处胶体粒子之间的毛细相互作用来创建二维(2D)材料,其中仅使用粒子形状就可以对粒子相互作用和自组装进行完全编程。具体而言,我们考虑的胶体粒子是具有均匀表面化学性质和起伏边缘的多边形平板,因为这种粒子几何形状使我们能够对短程硬核排斥和长程毛细相互作用进行精确且独立的控制。为了说明我们的系统在编程自组装方面的巨大潜力,我们使用最小能量计算和蒙特卡罗模拟来表明,具有不同平面形状(六边形、截顶三角形、三角形、正方形)和不同多极阶数(六极、八极、十二极)边缘起伏的多边形平板可用于创建各种各样的二维结构,包括六方密堆积、蜂窝状、 Kagome 和准晶体晶格。由于所需的粒子形状可以很容易地通过实验制造出来,我们可以使用我们的胶体系统来控制材料设计的整个过程链,从初始的构建块设计和制造,到最终二维材料的组装。