Suppr超能文献

蛋白质中 RNA 结合残基的伴侣特异性预测:一项批判性评估。

Partner-specific prediction of RNA-binding residues in proteins: A critical assessment.

机构信息

Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania.

Artificial Intelligence Research Laboratory, Pennsylvania State University, University Park, Pennsylvania.

出版信息

Proteins. 2019 Mar;87(3):198-211. doi: 10.1002/prot.25639. Epub 2018 Dec 30.

Abstract

RNA-protein interactions play essential roles in regulating gene expression. While some RNA-protein interactions are "specific", that is, the RNA-binding proteins preferentially bind to particular RNA sequence or structural motifs, others are "non-RNA specific." Deciphering the protein-RNA recognition code is essential for comprehending the functional implications of these interactions and for developing new therapies for many diseases. Because of the high cost of experimental determination of protein-RNA interfaces, there is a need for computational methods to identify RNA-binding residues in proteins. While most of the existing computational methods for predicting RNA-binding residues in RNA-binding proteins are oblivious to the characteristics of the partner RNA, there is growing interest in methods for partner-specific prediction of RNA binding sites in proteins. In this work, we assess the performance of two recently published partner-specific protein-RNA interface prediction tools, PS-PRIP, and PRIdictor, along with our own new tools. Specifically, we introduce a novel metric, RNA-specificity metric (RSM), for quantifying the RNA-specificity of the RNA binding residues predicted by such tools. Our results show that the RNA-binding residues predicted by previously published methods are oblivious to the characteristics of the putative RNA binding partner. Moreover, when evaluated using partner-agnostic metrics, RNA partner-specific methods are outperformed by the state-of-the-art partner-agnostic methods. We conjecture that either (a) the protein-RNA complexes in PDB are not representative of the protein-RNA interactions in nature, or (b) the current methods for partner-specific prediction of RNA-binding residues in proteins fail to account for the differences in RNA partner-specific versus partner-agnostic protein-RNA interactions, or both.

摘要

RNA 与蛋白质的相互作用在调控基因表达中起着至关重要的作用。虽然一些 RNA 与蛋白质的相互作用是“特异性”的,也就是说,RNA 结合蛋白优先结合特定的 RNA 序列或结构基序,而其他的相互作用则是非 RNA 特异性的。破译蛋白质与 RNA 的识别密码对于理解这些相互作用的功能意义以及为许多疾病开发新的治疗方法至关重要。由于实验确定蛋白质与 RNA 界面的成本高昂,因此需要计算方法来识别蛋白质中的 RNA 结合残基。虽然大多数现有的预测 RNA 结合蛋白中 RNA 结合残基的计算方法都忽略了伙伴 RNA 的特征,但对于针对蛋白质中 RNA 结合位点的伙伴特异性预测方法的兴趣正在增长。在这项工作中,我们评估了两种最近发布的伙伴特异性蛋白质与 RNA 界面预测工具 PS-PRIP 和 PRIdictor 以及我们自己的新工具的性能。具体来说,我们引入了一种新的度量标准,即 RNA 特异性度量标准(RSM),用于量化这些工具预测的 RNA 结合残基的 RNA 特异性。我们的结果表明,以前发表的方法预测的 RNA 结合残基忽略了潜在 RNA 结合伙伴的特征。此外,当使用无伙伴的度量标准进行评估时,基于伙伴的方法在基于无伙伴的方法方面表现不佳。我们推测,要么 (a) PDB 中的蛋白质与 RNA 复合物不能代表自然界中的蛋白质与 RNA 相互作用,要么 (b) 目前用于预测蛋白质中 RNA 结合残基的基于伙伴的特异性方法无法解释 RNA 伙伴特异性与无伙伴的蛋白质与 RNA 相互作用之间的差异,或者两者兼而有之。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc35/6519207/83fc2791faab/PROT-87-198-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验