Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052, China.
State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
BMC Plant Biol. 2018 Dec 12;18(1):350. doi: 10.1186/s12870-018-1545-5.
Auxin-induced genes regulate many aspects of plant growth and development. The Gretchen Hagen 3 (GH3) gene family, one of three major early auxin-responsive families, is ubiquitous in the plant kingdom and its members function as regulators in modulating hormonal homeostasis, and stress adaptations. Specific Auxin-amido synthetase activity of GH3 subfamily II genes is reported to reversibly inactivate or fully degrade excess auxin through the formation of amino acid conjugates. Despite these crucial roles, to date, genome-wide analysis of the GH3 gene family has not been reported in cotton.
We identified a total of 10 GH3 subfamily II genes in G. arboreum, 10 in G. raimondii, and 20 in G. hirsutum, respectively. Bioinformatic analysis showed that cotton GH3 genes are conserved with the established GH3s in plants. Expression pattern analysis based on RNA-seq data and qRT-PCR revealed that 20 GhGH3 genes were differentially expressed in a temporally and spatially specific manner, indicating their diverse functions in growth and development. We further summarized the organization of promoter regulatory elements and monitored their responsiveness to treatment with IAA (indole-3-acetic acid), SA (salicylic acid), GA (gibberellic acid) and BL (brassinolide) by qRT-PCR in roots and stems. These hormones seemed to regulate the expression of GH3 genes in both a positive and a negative manner while certain members likely have higher sensitivity to all four hormones. Further, we tested the expression of GhGH3 genes in the BR-deficient mutant pag1 and the corresponding wild-type (WT) of CCRI24. The altered expression reflected the true responsiveness to BL and further suggested possible reasons, at least in part, responsible for the dramatic dwarf and shriveled phenotypes of pag1.
We comprehensively identified GH3 subfamily II genes in cotton. GhGH3s are differentially expressed in various tissues/organs/stages. Their response to IAA, SA, BL and GA and altered expression in pag1 suggest that some GhGH3 genes might be simultaneously involved in multiple hormone signaling pathways. Taken together, our results suggest that members of the GhGH3 gene family could be possible candidate genes for mechanistic study and applications in cotton fiber development in addition to the reconstruction of plant architecture.
生长素诱导基因调控植物生长和发育的许多方面。GH3 基因家族是三大早期生长素应答家族之一,在植物界普遍存在,其成员作为调节剂,调节激素平衡和应激适应。据报道,GH3 亚家族 II 基因的特定生长素-酰胺合成酶活性通过形成氨基酸缀合物可逆地失活或完全降解过量的生长素。尽管这些作用至关重要,但迄今为止,棉花的 GH3 基因家族的全基因组分析尚未报道。
我们分别在 G. arboreum 中鉴定到 10 个 GH3 亚家族 II 基因,在 G. raimondii 中鉴定到 10 个,在 G. hirsutum 中鉴定到 20 个。生物信息学分析表明,棉花 GH3 基因与植物中已建立的 GH3 基因保守。基于 RNA-seq 数据和 qRT-PCR 的表达模式分析表明,20 个 GhGH3 基因在时空上以特定的方式差异表达,表明它们在生长和发育过程中具有不同的功能。我们进一步总结了启动子调控元件的组织,并通过 qRT-PCR 监测它们对 IAA(吲哚-3-乙酸)、SA(水杨酸)、GA(赤霉素)和 BL(油菜素内酯)处理的响应在根和茎中。这些激素似乎以正负两种方式调节 GH3 基因的表达,而某些成员可能对所有四种激素都有更高的敏感性。此外,我们测试了 GhGH3 基因在 BR 缺陷突变体 pag1 和相应的 CCRI24 野生型(WT)中的表达。表达的改变反映了对 BL 的真实反应,并进一步表明至少部分原因导致了 pag1 的明显矮化和皱缩表型。
我们全面鉴定了棉花中的 GH3 亚家族 II 基因。GhGH3s 在不同的组织/器官/阶段差异表达。它们对 IAA、SA、BL 和 GA 的反应以及在 pag1 中的表达变化表明,一些 GhGH3 基因可能同时参与多个激素信号通路。综上所述,我们的研究结果表明,GhGH3 基因家族的成员可能是棉花纤维发育的机制研究和应用的候选基因,除了植物结构的重建。