LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue JB Clément, 93340 Villetaneuse, France.
Division of Neurosurgery, University of Alberta, Edmonton, Canada.
Acta Biomater. 2019 Jan 1;83:37-54. doi: 10.1016/j.actbio.2018.10.036. Epub 2018 Oct 26.
Implanted biomaterials play a key role in the current success of orthopedic and dental procedures. Pure titanium and its alloys are the most commonly used materials for permanent implants in contact with bone. However, implant-related infections remain among the leading reasons for failure. The most critical pathogenic event in the development of infection on biomaterials is biofilm formation, which starts immediately after bacterial adhesion. In the last decade, numerous studies reported the ability of titanium surface modifications and coatings to minimize bacterial adhesion, inhibit biofilm formation and provide effective bacterial killing to protect implanted biomaterials. In the present review, the different strategies to prevent infection onto titanium surfaces are reported: surface modification and coatings by antibiotics, antimicrobial peptides, inorganic antibacterial metal elements and antibacterial polymers. STATEMENT OF SIGNIFICANCE: Implanted biomaterials play a key role in the current success of orthopedic and dental procedures. Pure titanium and its alloys are the most commonly used materials for permanent implants in contact with bone. Microbial infection is one of the main causes of implant failure. Currently, the global infection risk is 2-5% in orthopedic surgery. Numerous solutions exist to render titanium surfaces antibacterial. The LBPS team is an expert on the functionalization of titanium surfaces by using bioactive polymers to improve the biologiocal response. In this review, the different strategies to prevent infection are reported onto titanium and titanium alloy surfaces such as surface modification by antibiotics, antimicrobial peptides, inorganic antibacterial metal elements and antibacterial polymers.
植入式生物材料在骨科和牙科手术的当前成功中起着关键作用。纯钛及其合金是与骨接触的永久性植入物中最常用的材料。然而,与植入物相关的感染仍然是失败的主要原因之一。生物材料感染发展过程中最关键的致病事件是细菌黏附后立即开始的生物膜形成。在过去的十年中,许多研究报告称,钛表面改性和涂层能够最大限度地减少细菌黏附、抑制生物膜形成,并提供有效的杀菌作用来保护植入式生物材料。在本综述中,报道了防止钛表面感染的不同策略:抗生素、抗菌肽、无机抗菌金属元素和抗菌聚合物的表面改性和涂层。
植入式生物材料在当前骨科和牙科手术的成功中起着关键作用。纯钛及其合金是与骨接触的永久性植入物中最常用的材料。微生物感染是植入物失败的主要原因之一。目前,骨科手术的全球感染风险为 2-5%。有许多方法可以使钛表面具有抗菌性。LBPS 团队是利用生物活性聚合物对钛表面进行功能化以改善生物学反应的专家。在本综述中,报道了防止钛和钛合金表面感染的不同策略,例如抗生素、抗菌肽、无机抗菌金属元素和抗菌聚合物的表面改性。
Acta Biomater. 2018-10-26
J Orthop Surg Res. 2015-10-1
J Biomed Mater Res B Appl Biomater. 2009-10
ACS Appl Mater Interfaces. 2016-3-2
Mater Sci Eng C Mater Biol Appl. 2014-12
Proc Inst Mech Eng H. 2014-10
Zhonghua Kou Qiang Yi Xue Za Zhi. 2018-6-9
Front Bioeng Biotechnol. 2025-7-10
Nanomaterials (Basel). 2025-7-1
Biomolecules. 2025-5-23