Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125.
Department of Biochemistry, Vanderbilt University, Nashville, TN 37235.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13186-13191. doi: 10.1073/pnas.1810715115. Epub 2018 Dec 12.
Eukaryotic DNA primases contain a [4Fe4S] cluster in the C-terminal domain of the p58 subunit (p58C) that affects substrate affinity but is not required for catalysis. We show that, in yeast primase, the cluster serves as a DNA-mediated redox switch governing DNA binding, just as in human primase. Despite a different structural arrangement of tyrosines to facilitate electron transfer between the DNA substrate and [4Fe4S] cluster, in yeast, mutation of tyrosines Y395 and Y397 alters the same electron transfer chemistry and redox switch. Mutation of conserved tyrosine 395 diminishes the extent of p58C participation in normal redox-switching reactions, whereas mutation of conserved tyrosine 397 causes oxidative cluster degradation to the [3Fe4S] species during p58C redox signaling. Switching between oxidized and reduced states in the presence of the Y397 mutations thus puts primase [4Fe4S] cluster integrity and function at risk. Consistent with these observations, we find that yeast tolerate mutations to Y395 in p58C, but the single-residue mutation Y397L in p58C is lethal. Our data thus show that a constellation of tyrosines for protein-DNA electron transfer mediates the redox switch in eukaryotic primases and is required for primase function in vivo.
真核生物 DNA 引物酶在 p58 亚基(p58C)的 C 末端结构域中含有一个 [4Fe4S]簇,该簇影响底物亲和力,但不是催化所必需的。我们表明,在酵母引物酶中,该簇作为 DNA 介导的氧化还原开关,调节 DNA 结合,就像在人类引物酶中一样。尽管存在不同的酪氨酸结构排列以促进 DNA 底物和 [4Fe4S]簇之间的电子转移,但在酵母中,酪氨酸 Y395 和 Y397 的突变改变了相同的电子转移化学和氧化还原开关。保守的酪氨酸 395 的突变减少了 p58C 参与正常氧化还原开关反应的程度,而保守的酪氨酸 397 的突变导致 p58C 氧化还原信号过程中 [3Fe4S] 物种的氧化簇降解。因此,在存在 Y397 突变的情况下,在氧化态和还原态之间切换会使引物酶 [4Fe4S]簇的完整性和功能面临风险。与这些观察结果一致,我们发现酵母可以耐受 p58C 中 Y395 的突变,但 p58C 中的单个残基突变 Y397L 是致命的。因此,我们的数据表明,一组用于蛋白质-DNA 电子转移的酪氨酸介导了真核引物酶中的氧化还原开关,并且是体内引物酶功能所必需的。