College of Mechanical Engineering, Dong Hua University, Shanghai 201620, China.
College of Literature, Science and the Arts, The University of Michigan, Ann Arbor, MI 48109, USA.
Sensors (Basel). 2018 Dec 10;18(12):4369. doi: 10.3390/s18124369.
At present, realizing high-quality automatic welding through online monitoring is a research focus in engineering applications. In this paper, a CNN⁻LSTM algorithm is proposed, which combines the advantages of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs). The CNN⁻LSTM algorithm establishes a shallow CNN to extract the primary features of the molten pool image. Then the feature tensor extracted by the CNN is transformed into the feature matrix. Finally, the rows of the feature matrix are fed into the LSTM network for feature fusion. This process realizes the implicit mapping from molten pool images to welding defects. The test results on the self-made molten pool image dataset show that CNN contributes to the overall feasibility of the CNN⁻LSTM algorithm and LSTM network is the most superior in the feature hybrid stage. The algorithm converges at 300 epochs and the accuracy of defects detection in CO₂ welding molten pool is 94%. The processing time of a single image is 0.067 ms, which fully meets the real-time monitoring requirement based on molten pool image. The experimental results on the MNIST and FashionMNIST datasets show that the algorithm is universal and can be used for similar image recognition and classification tasks.
目前,通过在线监测实现高质量的自动焊接是工程应用中的一个研究重点。本文提出了一种结合卷积神经网络(CNN)和长短时记忆网络(LSTM)优势的 CNN⁻LSTM 算法。CNN⁻LSTM 算法建立了一个浅层 CNN 来提取熔池图像的主要特征。然后,CNN 提取的特征张量被转换为特征矩阵。最后,特征矩阵的行被输入到 LSTM 网络进行特征融合。这个过程实现了从熔池图像到焊接缺陷的隐式映射。在自制的熔池图像数据集上的测试结果表明,CNN 有助于 CNN⁻LSTM 算法的整体可行性,而在特征混合阶段,LSTM 网络是最优越的。该算法在 300 个 epoch 时收敛,CO₂ 焊接熔池缺陷检测的准确率达到 94%。单张图像的处理时间为 0.067ms,完全满足基于熔池图像的实时监测要求。在 MNIST 和 FashionMNIST 数据集上的实验结果表明,该算法具有通用性,可用于类似的图像识别和分类任务。