Suppr超能文献

使用长短期记忆神经网络确定固态相变时间序列的算法

Algorithm for Determining Time Series of Phase Transformations in the Solid State Using Long-Short-Term Memory Neural Network.

作者信息

Wróbel Joanna, Kulawik Adam

机构信息

Department of Computer Science, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa, Poland.

出版信息

Materials (Basel). 2022 May 26;15(11):3792. doi: 10.3390/ma15113792.

Abstract

In the numerical analysis of manufacturing processes of metal parts, many material properties depending on, for example, the temperature or stress state, must be taken into account. Often these data are dependent on the temperature changes over time. Strongly non-linear material property relationships are usually represented using diagrams. In numerical calculations, these diagrams are analyzed in order to take into account the coupling between the properties. An example of these types of material properties is the dependence of the kinetics of phase transformations in the solid state on the rate and history of temperature change. In literature, these data are visualized Continuous Heating Transformation (CHT) and Continuous Cooling Transformation (CCT) diagrams. Therefore, it can be concluded that time series analysis is important in numerical modeling. This analysis can also be performed using neural networks. This work presents a new approach to storing and analyzing the data contained in the discussed CCT diagrams. The application of Long-Short-Term Memory (LSTM) neural networks and their architecture to determine the correct values of phase fractions depending on the history of temperature change was analyzed. Moreover, an area of research was elements that determine what type of information should be stored by LSTM network coefficients, e.g., whether the network should store information about changes of single phase transformations, or whether it would be better to extract data from differences between several networks with similar architecture. The purpose of the studied network is strongly different from typical applications of artificial neural networks. The main goal of the network was to store information (even by overfitting the network) rather than some form of generalization that allows computation for unknown cases. Therefore, the authors primarily investigated in the ability of the layer-based LSTM network to store nonlinear time series data. The analyses presented in this paper are an extension of the issues presented in the paper entitled "Model of the Austenite Decomposition during Cooling of the Medium Carbon Steel Using LSTM Recurrent Neural Network".

摘要

在金属零件制造过程的数值分析中,必须考虑许多取决于例如温度或应力状态的材料特性。通常,这些数据取决于随时间的温度变化。强非线性材料特性关系通常用图表表示。在数值计算中,分析这些图表以考虑特性之间的耦合。这类材料特性的一个例子是固态相变动力学对温度变化速率和历史的依赖性。在文献中,这些数据通过连续加热转变(CHT)图和连续冷却转变(CCT)图进行可视化。因此,可以得出结论,时间序列分析在数值建模中很重要。这种分析也可以使用神经网络进行。本文提出了一种存储和分析所讨论的CCT图中包含的数据的新方法。分析了长短期记忆(LSTM)神经网络及其架构在根据温度变化历史确定相分数正确值方面的应用。此外,一个研究领域是确定LSTM网络系数应存储何种类型信息的因素,例如,网络是否应存储有关单相转变变化的信息,或者从具有相似架构的几个网络之间的差异中提取数据是否会更好。所研究网络的目的与人工神经网络的典型应用有很大不同。该网络的主要目标是存储信息(甚至通过使网络过度拟合),而不是某种形式的泛化,以便能够对未知情况进行计算。因此,作者主要研究了基于层的LSTM网络存储非线性时间序列数据的能力。本文所呈现的分析是对题为“使用LSTM递归神经网络对中碳钢冷却过程中奥氏体分解的建模”一文中所提出问题的扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/9181814/f87acf223028/materials-15-03792-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验