Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany.
Microb Cell Fact. 2018 Dec 13;17(1):193. doi: 10.1186/s12934-018-1045-1.
Beyond pathway engineering, the metabolic state of the production host is critical in maintaining the efficiency of cellular production. The biotechnologically important yeast Saccharomyces cerevisiae adjusts its energy metabolism based on the availability of oxygen and carbon sources. This transition between respiratory and non-respiratory metabolic state is accompanied by substantial modifications of central carbon metabolism, which impact the efficiency of metabolic pathways and the corresponding final product titers. Non-ribosomal peptide synthetases (NRPS) are an important class of biocatalysts that provide access to a wide array of secondary metabolites. Indigoidine, a blue pigment, is a representative NRP that is valuable by itself as a renewably produced pigment.
Saccharomyces cerevisiae was engineered to express a bacterial NRPS that converts glutamine to indigoidine. We characterize carbon source use and production dynamics, and demonstrate that indigoidine is solely produced during respiratory cell growth. Production of indigoidine is abolished during non-respiratory growth even under aerobic conditions. By promoting respiratory conditions via controlled feeding, we scaled the production to a 2 L bioreactor scale, reaching a maximum titer of 980 mg/L.
This study represents the first use of the Streptomyces lavendulae NRPS (BpsA) in a fungal host and its scale-up. The final product indigoidine is linked to the activity of the TCA cycle and serves as a reporter for the respiratory state of S. cerevisiae. Our approach can be broadly applied to investigate diversion of flux from central carbon metabolism for NRPS and other heterologous pathway engineering, or to follow a population switch between respiratory and non-respiratory modes.
除了途径工程之外,生产宿主的代谢状态对于维持细胞生产效率也至关重要。生物技术上重要的酵母酿酒酵母根据氧气和碳源的可用性来调整其能量代谢。这种呼吸和非呼吸代谢状态之间的转变伴随着中央碳代谢的实质性改变,这会影响代谢途径的效率和相应的最终产物滴度。非核糖体肽合酶(NRPS)是一类重要的生物催化剂,可用于合成广泛的次生代谢物。靛蓝是一种蓝色色素,是一种有价值的可再生生产色素。
我们构建了表达细菌 NRPS 的酿酒酵母,该 NRPS 将谷氨酰胺转化为靛蓝。我们对碳源的利用和生产动力学进行了表征,并证明了靛蓝仅在呼吸细胞生长过程中产生。即使在有氧条件下,非呼吸生长也会导致靛蓝的生产被完全抑制。通过控制补料来促进呼吸条件,我们将生产规模扩大到 2 L 生物反应器规模,达到了 980 mg/L 的最大产量。
这项研究代表了 Streptomyces lavendulae NRPS(BpsA)在真菌宿主中的首次应用及其放大。最终产物靛蓝与 TCA 循环的活性相关联,可作为酿酒酵母呼吸状态的报告分子。我们的方法可广泛应用于调查 NRPS 和其他异源途径工程中从中央碳代谢分流的通量,或跟踪呼吸和非呼吸模式之间的种群转变。