MIT Media Lab, Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
Nat Commun. 2018 Dec 13;9(1):5303. doi: 10.1038/s41467-018-07721-w.
Optogenetics has been used to orchestrate temporal- and tissue-specific control of neural tissues and offers a wealth of unique advantages for neuromuscular control. Here, we establish a closed-loop functional optogenetic stimulation (CL-FOS) system to control ankle joint position in murine models. Using the measurement of either joint angle or fascicle length as a feedback signal, we compare the controllability of CL-FOS to closed-loop functional electrical stimulation (CL-FES) and demonstrate significantly greater accuracy, lower rise times and lower overshoot percentages. We demonstrate orderly recruitment of motor units and reduced fatigue when performing cyclical movements with CL-FOS compared with CL-FES. We develop and investigate a 3-phase, photo-kinetic model to elucidate the underlying mechanisms for temporal variations in optogenetically activated neuromusculature during closed-loop control experiments. Methods and insights from this study lay the groundwork for the development of closed-loop optogenetic neuromuscular stimulation therapies and devices for peripheral limb control.
光遗传学已被用于协调神经组织的时间和组织特异性控制,并为神经肌肉控制提供了丰富的独特优势。在这里,我们建立了一个闭环功能光遗传学刺激(CL-FOS)系统来控制小鼠模型中的踝关节位置。使用关节角度或肌束长度的测量作为反馈信号,我们比较了 CL-FOS 与闭环功能性电刺激(CL-FES)的可控性,并证明了更高的准确性、更低的上升时间和更低的超调百分比。与 CL-FES 相比,在进行周期性运动时,CL-FOS 可有序地募集运动单位并减少疲劳。我们开发并研究了一个 3 相光动力学模型,以阐明在闭环控制实验中,光遗传学激活的神经肌肉组织的时间变化的潜在机制。本研究的方法和见解为闭环光遗传学神经肌肉刺激疗法和外围肢体控制设备的开发奠定了基础。