Suppr超能文献

机器学习预测全国 FACE-SZ 队列精神分裂症患者 2 年内精神病复发的风险。

Machine learning for predicting psychotic relapse at 2 years in schizophrenia in the national FACE-SZ cohort.

机构信息

Fondation FondaMental, Créteil, France; Faculté de Médecine - Secteur Timone, Aix-Marseille Univ, d'Etude et de Recherche sur les Services de Santé et la Qualité de vie, 27 Boulevard Jean Moulin, 13005 Marseille, France.

Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France.

出版信息

Prog Neuropsychopharmacol Biol Psychiatry. 2019 Jun 8;92:8-18. doi: 10.1016/j.pnpbp.2018.12.005. Epub 2018 Dec 12.

Abstract

BACKGROUND

Predicting psychotic relapse is one of the major challenges in the daily care of schizophrenia.

OBJECTIVES

To determine the predictors of psychotic relapse and follow-up withdrawal in a non-selected national sample of stabilized community-dwelling SZ subjects with a machine learning approach.

METHODS

Participants were consecutively included in the network of the FondaMental Expert Centers for Schizophrenia and received a thorough clinical and cognitive assessment, including recording of current treatment. Relapse was defined by at least one acute psychotic episode of at least 7 days, reported by the patient, her/his relatives or by the treating psychiatrist, within the 2-year follow-up. A classification and regression tree (CART) was used to construct a predictive decision tree of relapse and follow-up withdrawal.

RESULTS

Overall, 549 patients were evaluated in the expert centers at baseline and 315 (57.4%) (mean age = 32.6 years, 24% female gender) were followed-up at 2 years. On the 315 patients who received a visit at 2 years, 125(39.7%) patients had experienced psychotic relapse at least once within the 2 years of follow-up. High anger (Buss&Perry subscore), high physical aggressiveness (Buss&Perry scale subscore), high lifetime number of hospitalization in psychiatry, low education level, and high positive symptomatology at baseline (PANSS positive subscore) were found to be the best predictors of relapse at 2 years, with a percentage of correct prediction of 63.8%, sensitivity 71.0% and specificity 44.8%. High PANSS excited score, illness duration <2 years, low Buss&Perry hostility score, high CTQ score, low premorbid IQ and low medication adherence (BARS) score were found to be the best predictors of follow-up withdrawal with a percentage of correct prediction of 52.4%, sensitivity 62%, specificity 38.7%.

CONCLUSION

Machine learning can help constructing predictive score. In the present sample, aggressiveness appears to be a good early warning sign of psychotic relapse and follow-up withdrawal and should be systematically assessed in SZ subjects. The other above-mentioned clinical variables may help clinicians to improve the prediction of psychotic relapse at 2 years.

摘要

背景

预测精神病复发是精神分裂症日常护理的主要挑战之一。

目的

采用机器学习方法,确定非选择性全国社区居住的稳定精神分裂症患者样本中精神病复发和随访退出的预测因素。

方法

连续纳入精神分裂症 FondaMental 专家中心网络的参与者,并接受全面的临床和认知评估,包括记录当前治疗情况。复发的定义为在 2 年随访期间,患者、其亲属或治疗精神科医生报告至少有一次至少 7 天的急性精神病发作。使用分类和回归树(CART)构建复发和随访退出的预测决策树。

结果

共有 549 名患者在专家中心进行了基线评估,其中 315 名(57.4%)(平均年龄 32.6 岁,24%为女性)在 2 年后进行了随访。在接受 2 年随访的 315 名患者中,有 125 名(39.7%)患者在 2 年内至少经历过一次精神病复发。高愤怒(Buss 和 Perry 亚量表得分)、高身体攻击性(Buss 和 Perry 量表亚量表得分)、一生中精神科住院次数多、教育程度低和基线时阳性症状严重(PANSS 阳性亚量表得分)被发现是 2 年内复发的最佳预测因素,预测正确率为 63.8%,灵敏度为 71.0%,特异性为 44.8%。高 PANSS 兴奋评分、病程<2 年、低 Buss 和 Perry 敌意评分、高 CTQ 评分、低学前智商和低药物依从性(BARS)评分是随访退出的最佳预测因素,预测正确率为 52.4%,灵敏度为 62%,特异性为 38.7%。

结论

机器学习可以帮助构建预测评分。在本样本中,攻击性似乎是精神病复发和随访退出的一个很好的早期预警信号,应在精神分裂症患者中系统评估。上述其他临床变量可能有助于临床医生提高 2 年内精神病复发的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验