Suppr超能文献

精神病预后预测器:对首发精神病治疗结果的连续且感知不确定性的预测。

Psychosis Prognosis Predictor: A continuous and uncertainty-aware prediction of treatment outcome in first-episode psychosis.

作者信息

van Opstal Daniël P J, Kia Seyed Mostafa, Jakob Lea, Somers Metten, Sommer Iris E C, Winter-van Rossum Inge, Kahn René S, Cahn Wiepke, Schnack Hugo G

机构信息

Brain Center, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.

出版信息

Acta Psychiatr Scand. 2025 Mar;151(3):280-292. doi: 10.1111/acps.13754. Epub 2024 Sep 18.

Abstract

INTRODUCTION

Machine learning models have shown promising potential in individual-level outcome prediction for patients with psychosis, but also have several limitations. To address some of these limitations, we present a model that predicts multiple outcomes, based on longitudinal patient data, while integrating prediction uncertainty to facilitate more reliable clinical decision-making.

MATERIAL AND METHODS

We devised a recurrent neural network architecture incorporating long short-term memory (LSTM) units to facilitate outcome prediction by leveraging multimodal baseline variables and clinical data collected at multiple time points. To account for model uncertainty, we employed a novel fuzzy logic approach to integrate the level of uncertainty into individual predictions. We predicted antipsychotic treatment outcomes in 446 first-episode psychosis patients in the OPTiMiSE study, for six different clinical scenarios. The treatment outcome measures assessed at both week 4 and week 10 encompassed symptomatic remission, clinical global remission, and functional remission.

RESULTS

Using only baseline predictors to predict different outcomes at week 4, leave-one-site-out validation AUC ranged from 0.62 to 0.66; performance improved when clinical data from week 1 was added (AUC = 0.66-0.71). For outcome at week 10, using only baseline variables, the models achieved AUC = 0.56-0.64; using data from more time points (weeks 1, 4, and 6) improved the performance to AUC = 0.72-0.74. After incorporating prediction uncertainties and stratifying the model decisions based on model confidence, we could achieve accuracies above 0.8 for ~50% of patients in five out of the six clinical scenarios.

CONCLUSION

We constructed prediction models utilizing a recurrent neural network architecture tailored to clinical scenarios derived from a time series dataset. One crucial aspect we incorporated was the consideration of uncertainty in individual predictions, which enhances the reliability of decision-making based on the model's output. We provided evidence showcasing the significance of leveraging time series data for achieving more accurate treatment outcome prediction in the field of psychiatry.

摘要

引言

机器学习模型在精神分裂症患者个体水平的预后预测中显示出了有前景的潜力,但也存在一些局限性。为了解决其中一些局限性,我们提出了一种基于患者纵向数据预测多种预后的模型,同时整合预测不确定性以促进更可靠的临床决策。

材料与方法

我们设计了一种包含长短期记忆(LSTM)单元的递归神经网络架构,通过利用多模态基线变量和在多个时间点收集的临床数据来促进预后预测。为了考虑模型不确定性,我们采用了一种新颖的模糊逻辑方法将不确定性水平整合到个体预测中。我们在OPTiMiSE研究中对446例首发精神分裂症患者的六种不同临床情况预测抗精神病药物治疗的预后。在第4周和第10周评估的治疗预后指标包括症状缓解、临床总体缓解和功能缓解。

结果

仅使用基线预测因子预测第4周的不同预后时,留一站点法验证的AUC范围为0.62至0.66;添加第1周的临床数据后性能有所改善(AUC = 0.66 - 0.71)。对于第10周的预后,仅使用基线变量时,模型的AUC = 0.56至0.64;使用更多时间点(第1、4和6周)的数据可将性能提高到AUC = 0.72至0.74。在纳入预测不确定性并根据模型置信度对模型决策进行分层后,我们在六种临床情况中的五种情况下,约50%的患者可实现准确率高于0.8。

结论

我们利用针对从时间序列数据集得出的临床情况量身定制的递归神经网络架构构建了预测模型。我们纳入的一个关键方面是考虑个体预测中的不确定性,这提高了基于模型输出进行决策的可靠性。我们提供的证据表明了在精神病学领域利用时间序列数据实现更准确治疗预后预测的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a571/11787921/e7f87bf42ae2/ACPS-151-280-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验