Suppr超能文献

机器学习方法在预测精神分裂症和双相情感障碍中的应用:一项系统综述。

Application of machine learning methods in predicting schizophrenia and bipolar disorders: A systematic review.

作者信息

Montazeri Mahdieh, Montazeri Mitra, Bahaadinbeigy Kambiz, Montazeri Mohadeseh, Afraz Ali

机构信息

Department of Health Information Sciences, Faculty of Management and Medical Information Sciences Kerman University of Medical Sciences Kerman Iran.

Medical Informatics Research Center, Institute for Futures Studies in Health Kerman University of Medical Sciences Kerman Iran.

出版信息

Health Sci Rep. 2022 Dec 28;6(1):e962. doi: 10.1002/hsr2.962. eCollection 2023 Jan.

Abstract

BACKGROUND AND AIM

Schizophrenia and bipolar disorder (BD) are critical and high-risk inherited mental disorders with debilitating symptoms. Worldwide, 3% of the population suffers from these disorders. The mortality rate of these patients is higher compared to other people. Current procedures cannot effectively diagnose these disorders because it takes an average of 10 years from the onset of the first symptoms to the definitive diagnosis of the disease. Machine learning (ML) techniques are used to meet this need. This study aimed to summarize information on the use of ML techniques for predicting schizophrenia and BD to help early and timely diagnosis of the disease.

METHODS

A systematic literature search included articles published until January 19, 2020 in 3 databases. Two reviewers independently assessed original papers to determine eligibility for inclusion in this review. PRISMA guidelines were followed to conduct the study, and the Prediction Model Risk of Bias Assessment Tool (PROBAST) to assess included papers.

RESULTS

In this review, 1243 papers were retrieved through database searches, of which 15 papers were included based on full-text assessment. ML techniques were used to predict schizophrenia and BDs. The main algorithms applied were support vector machine (SVM) (10 studies), random forests (RF) (5 studies), and gradient boosting (GB) (3 studies). Input and output characteristics were very diverse and have been kept to enable future research. RFs algorithms demonstrated significantly higher accuracy and sensitivity than SVM and GB. GB demonstrated significantly higher specificity than SVM and RF. We found no significant difference between RF and SVM in terms of specificity.

CONCLUSION

ML can precisely predict results and assist in making clinical decisions-concerning schizophrenia and BD. RF often performed better than other algorithms in supervised learning tasks. This study identified gaps in the literature and opportunities for future psychological ML research.

摘要

背景与目的

精神分裂症和双相情感障碍(BD)是严重的高风险遗传性精神障碍,症状使人衰弱。在全球范围内,3%的人口患有这些疾病。这些患者的死亡率高于其他人。目前的程序无法有效诊断这些疾病,因为从首次出现症状到最终确诊疾病平均需要10年时间。机器学习(ML)技术被用于满足这一需求。本研究旨在总结关于使用ML技术预测精神分裂症和BD的信息,以帮助早期及时诊断该疾病。

方法

系统的文献检索包括截至2020年1月19日在3个数据库中发表的文章。两名评审员独立评估原始论文以确定是否符合纳入本综述的条件。遵循PRISMA指南进行研究,并使用预测模型偏倚风险评估工具(PROBAST)评估纳入的论文。

结果

在本综述中,通过数据库检索获得1243篇论文,其中15篇基于全文评估被纳入。ML技术被用于预测精神分裂症和BD。应用的主要算法有支持向量机(SVM)(10项研究)、随机森林(RF)(5项研究)和梯度提升(GB)(3项研究)。输入和输出特征非常多样,予以保留以便未来研究。RF算法显示出比SVM和GB显著更高的准确性和敏感性。GB显示出比SVM和RF显著更高的特异性。我们发现RF和SVM在特异性方面没有显著差异。

结论

ML可以精确预测结果并协助做出关于精神分裂症和BD的临床决策。在监督学习任务中,RF通常比其他算法表现更好。本研究确定了文献中的空白以及未来心理ML研究的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2414/9795991/cf7404f56980/HSR2-6-e962-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验