Mochida Keiichi, Koda Satoru, Inoue Komaki, Nishii Ryuei
Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan.
Front Plant Sci. 2018 Nov 29;9:1770. doi: 10.3389/fpls.2018.01770. eCollection 2018.
Statistical and machine learning (ML)-based methods have recently advanced in construction of gene regulatory network (GRNs) based on high-throughput biological datasets. GRNs underlie almost all cellular phenomena; hence, comprehensive GRN maps are essential tools to elucidate gene function, thereby facilitating the identification and prioritization of candidate genes for functional analysis. High-throughput gene expression datasets have yielded various statistical and ML-based algorithms to infer causal relationship between genes and decipher GRNs. This review summarizes the recent advancements in the computational inference of GRNs, based on large-scale transcriptome sequencing datasets of model plants and crops. We highlight strategies to select contextual genes for GRN inference, and statistical and ML-based methods for inferring GRNs based on transcriptome datasets from plants. Furthermore, we discuss the challenges and opportunities for the elucidation of GRNs based on large-scale datasets obtained from emerging transcriptomic applications, such as from population-scale, single-cell level, and life-course transcriptome analyses.
基于统计和机器学习(ML)的方法最近在基于高通量生物学数据集构建基因调控网络(GRN)方面取得了进展。GRN几乎是所有细胞现象的基础;因此,全面的GRN图谱是阐明基因功能的重要工具,从而有助于识别功能分析的候选基因并对其进行优先级排序。高通量基因表达数据集产生了各种基于统计和ML的算法,用于推断基因之间的因果关系并破译GRN。本综述总结了基于模式植物和作物的大规模转录组测序数据集在GRN计算推断方面的最新进展。我们重点介绍了为GRN推断选择背景基因的策略,以及基于植物转录组数据集推断GRN的基于统计和ML的方法。此外,我们讨论了基于从新兴转录组学应用(如群体规模、单细胞水平和生命历程转录组分析)获得的大规模数据集阐明GRN的挑战和机遇。