Suppr超能文献

从转录组数据集预测基因调控网络的统计和机器学习方法

Statistical and Machine Learning Approaches to Predict Gene Regulatory Networks From Transcriptome Datasets.

作者信息

Mochida Keiichi, Koda Satoru, Inoue Komaki, Nishii Ryuei

机构信息

Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.

Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan.

出版信息

Front Plant Sci. 2018 Nov 29;9:1770. doi: 10.3389/fpls.2018.01770. eCollection 2018.

Abstract

Statistical and machine learning (ML)-based methods have recently advanced in construction of gene regulatory network (GRNs) based on high-throughput biological datasets. GRNs underlie almost all cellular phenomena; hence, comprehensive GRN maps are essential tools to elucidate gene function, thereby facilitating the identification and prioritization of candidate genes for functional analysis. High-throughput gene expression datasets have yielded various statistical and ML-based algorithms to infer causal relationship between genes and decipher GRNs. This review summarizes the recent advancements in the computational inference of GRNs, based on large-scale transcriptome sequencing datasets of model plants and crops. We highlight strategies to select contextual genes for GRN inference, and statistical and ML-based methods for inferring GRNs based on transcriptome datasets from plants. Furthermore, we discuss the challenges and opportunities for the elucidation of GRNs based on large-scale datasets obtained from emerging transcriptomic applications, such as from population-scale, single-cell level, and life-course transcriptome analyses.

摘要

基于统计和机器学习(ML)的方法最近在基于高通量生物学数据集构建基因调控网络(GRN)方面取得了进展。GRN几乎是所有细胞现象的基础;因此,全面的GRN图谱是阐明基因功能的重要工具,从而有助于识别功能分析的候选基因并对其进行优先级排序。高通量基因表达数据集产生了各种基于统计和ML的算法,用于推断基因之间的因果关系并破译GRN。本综述总结了基于模式植物和作物的大规模转录组测序数据集在GRN计算推断方面的最新进展。我们重点介绍了为GRN推断选择背景基因的策略,以及基于植物转录组数据集推断GRN的基于统计和ML的方法。此外,我们讨论了基于从新兴转录组学应用(如群体规模、单细胞水平和生命历程转录组分析)获得的大规模数据集阐明GRN的挑战和机遇。

相似文献

引用本文的文献

2

本文引用的文献

3
Single-Cell RNA Sequencing: A New Window into Cell Scale Dynamics.单细胞 RNA 测序:细胞尺度动态的新窗口。
Biophys J. 2018 Aug 7;115(3):429-435. doi: 10.1016/j.bpj.2018.07.003. Epub 2018 Jul 11.
5
A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain.衰老果蝇大脑的单细胞转录组图谱。
Cell. 2018 Aug 9;174(4):982-998.e20. doi: 10.1016/j.cell.2018.05.057. Epub 2018 Jun 18.
7
Next-Generation Machine Learning for Biological Networks.下一代生物网络机器学习。
Cell. 2018 Jun 14;173(7):1581-1592. doi: 10.1016/j.cell.2018.05.015. Epub 2018 Jun 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验