Suppr超能文献

MICA:一种预测人类早期胚胎基因调控网络的多组学方法。

MICA: a multi-omics method to predict gene regulatory networks in early human embryos.

机构信息

Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, UK

Department of Statistical Science, University College, London, UK

出版信息

Life Sci Alliance. 2023 Oct 25;7(1). doi: 10.26508/lsa.202302415. Print 2024 Jan.

Abstract

Recent advances in single-cell omics have transformed characterisation of cell types in challenging-to-study biological contexts. In contexts with limited single-cell samples, such as the early human embryo inference of transcription factor-gene regulatory network (GRN) interactions is especially difficult. Here, we assessed application of different linear or non-linear GRN predictions to single-cell simulated and human embryo transcriptome datasets. We also compared how expression normalisation impacts on GRN predictions, finding that transcripts per million reads outperformed alternative methods. GRN inferences were more reproducible using a non-linear method based on mutual information (MI) applied to single-cell transcriptome datasets refined with chromatin accessibility (CA) (called MICA), compared with alternative network prediction methods tested. MICA captures complex non-monotonic dependencies and feedback loops. Using MICA, we generated the first GRN inferences in early human development. MICA predicted co-localisation of the AP-1 transcription factor subunit proto-oncogene JUND and the TFAP2C transcription factor AP-2γ in early human embryos. Overall, our comparative analysis of GRN prediction methods defines a pipeline that can be applied to single-cell multi-omics datasets in especially challenging contexts to infer interactions between transcription factor expression and target gene regulation.

摘要

单细胞组学的最新进展改变了在具有挑战性的生物环境中对细胞类型进行描述的方式。在单细胞样本有限的情况下,例如人类早期胚胎,转录因子-基因调控网络(GRN)相互作用的推断尤其困难。在这里,我们评估了不同线性或非线性 GRN 预测在单细胞模拟和人类胚胎转录组数据集上的应用。我们还比较了表达归一化对 GRN 预测的影响,发现每百万个读数的转录本优于替代方法。与测试的替代网络预测方法相比,基于互信息(MI)应用于经过染色质可及性(CA)细化的单细胞转录组数据集的非线性方法(称为 MICA),对 GRN 推断的重现性更好。MICA 捕获了复杂的非单调依赖性和反馈回路。使用 MICA,我们在人类早期发育中生成了第一个 GRN 推断。MICA 预测了早期人类胚胎中原癌基因 JUND 和转录因子 AP-2γ 的 AP-1 转录因子亚基 TFAP2C 的共定位。总的来说,我们对 GRN 预测方法的比较分析定义了一个可以应用于特别具有挑战性的单细胞多组学数据集的管道,以推断转录因子表达和靶基因调控之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/941d/10599980/a57751ba4550/LSA-2023-02415_Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验