文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习网络的层次融合策略用于从 CT 图像中检测和分割肝细胞癌。

A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images.

机构信息

Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.

School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.

出版信息

Cancer Imaging. 2024 Mar 26;24(1):43. doi: 10.1186/s40644-024-00686-8.


DOI:10.1186/s40644-024-00686-8
PMID:38532511
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10964581/
Abstract

BACKGROUND: Automatic segmentation of hepatocellular carcinoma (HCC) on computed tomography (CT) scans is in urgent need to assist diagnosis and radiomics analysis. The aim of this study is to develop a deep learning based network to detect HCC from dynamic CT images. METHODS: Dynamic CT images of 595 patients with HCC were used. Tumors in dynamic CT images were labeled by radiologists. Patients were randomly divided into training, validation and test sets in a ratio of 5:2:3, respectively. We developed a hierarchical fusion strategy of deep learning networks (HFS-Net). Global dice, sensitivity, precision and F1-score were used to measure performance of the HFS-Net model. RESULTS: The 2D DenseU-Net using dynamic CT images was more effective for segmenting small tumors, whereas the 2D U-Net using portal venous phase images was more effective for segmenting large tumors. The HFS-Net model performed better, compared with the single-strategy deep learning models in segmenting small and large tumors. In the test set, the HFS-Net model achieved good performance in identifying HCC on dynamic CT images with global dice of 82.8%. The overall sensitivity, precision and F1-score were 84.3%, 75.5% and 79.6% per slice, respectively, and 92.2%, 93.2% and 92.7% per patient, respectively. The sensitivity in tumors < 2 cm, 2-3, 3-5 cm and > 5 cm were 72.7%, 92.9%, 94.2% and 100% per patient, respectively. CONCLUSIONS: The HFS-Net model achieved good performance in the detection and segmentation of HCC from dynamic CT images, which may support radiologic diagnosis and facilitate automatic radiomics analysis.

摘要

背景:在计算机断层扫描(CT)扫描上自动分割肝细胞癌(HCC),以辅助诊断和放射组学分析,这是当务之急。本研究旨在开发一种基于深度学习的网络,从动态 CT 图像中检测 HCC。

方法:使用 595 例 HCC 患者的动态 CT 图像。放射科医生对动态 CT 图像中的肿瘤进行标记。患者按 5:2:3 的比例随机分为训练集、验证集和测试集。我们提出了一种深度学习网络的分层融合策略(HFS-Net)。采用全局 Dice、敏感性、精度和 F1 评分来评估 HFS-Net 模型的性能。

结果:使用动态 CT 图像的 2D DenseU-Net 对分割小肿瘤更有效,而使用门静脉期图像的 2D U-Net 对分割大肿瘤更有效。与单一策略的深度学习模型相比,HFS-Net 模型在分割小肿瘤和大肿瘤方面表现更好。在测试集中,HFS-Net 模型在识别动态 CT 图像上的 HCC 方面表现良好,全局 Dice 为 82.8%。每片的总体敏感性、精度和 F1 评分分别为 84.3%、75.5%和 79.6%,每位患者分别为 92.2%、93.2%和 92.7%。肿瘤 < 2cm、2-3cm、3-5cm 和 > 5cm 的患者敏感性分别为 72.7%、92.9%、94.2%和 100%。

结论:HFS-Net 模型在从动态 CT 图像中检测和分割 HCC 方面表现良好,这可能有助于放射学诊断,并促进自动放射组学分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057d/10964581/abf1d7708a0e/40644_2024_686_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057d/10964581/f5f717176d7d/40644_2024_686_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057d/10964581/1e2b9980e353/40644_2024_686_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057d/10964581/abf1d7708a0e/40644_2024_686_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057d/10964581/f5f717176d7d/40644_2024_686_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057d/10964581/1e2b9980e353/40644_2024_686_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057d/10964581/abf1d7708a0e/40644_2024_686_Fig3_HTML.jpg

相似文献

[1]
A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images.

Cancer Imaging. 2024-3-26

[2]
Automatic segmentation of hepatocellular carcinoma on dynamic contrast-enhanced MRI based on deep learning.

Phys Med Biol. 2024-3-12

[3]
Computer-aided diagnosis of cystic lung diseases using CT scans and deep learning.

Med Phys. 2024-9

[4]
Deep Learning Model With Convolutional Neural Network for Detecting and Segmenting Hepatocellular Carcinoma in CT: A Preliminary Study.

Cureus. 2022-1-17

[5]
Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images.

Comput Biol Med. 2024-5

[6]
Development of a deep learning-based auto-segmentation algorithm for hepatocellular carcinoma (HCC) and application to predict microvascular invasion of HCC using CT texture analysis: preliminary results.

Acta Radiol. 2023-3

[7]
Deep learning-based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC.

Eur Radiol. 2021-9

[8]
Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks.

Int J Comput Assist Radiol Surg. 2019-4-30

[9]
Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.

Med Phys. 2021-5

[10]
Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images.

Pol J Radiol. 2022-8-26

引用本文的文献

[1]
ICT-Net: An Integrated Convolution and Transformer-Based Network for Complex Liver and Liver Tumor Region Segmentation.

IEEE J Transl Eng Health Med. 2025-7-7

[2]
Comprehensive multi-phase 3D contrast-enhanced CT imaging for primary liver cancer.

Sci Data. 2025-5-10

[3]
Diagnostic Performance of Deep Learning Applications in Hepatocellular Carcinoma Detection Using Computed Tomography Imaging.

Turk J Gastroenterol. 2024-12-30

[4]
Vascular liver segmentation: a narrative review on methods and new insights brought by artificial intelligence.

J Int Med Res. 2024-9

[5]
Artificial intelligence techniques in liver cancer.

Front Oncol. 2024-9-3

[6]
The evolution and revolution of artificial intelligence in hepatology: From current applications to future paradigms.

Hepatol Forum. 2024-7-2

本文引用的文献

[1]
Redefining Tumor Burden in Patients with Intermediate-Stage Hepatocellular Carcinoma: The Seven-Eleven Criteria.

Liver Cancer. 2021-7-22

[2]
Evolutionary Learning-Derived Clinical-Radiomic Models for Predicting Early Recurrence of Hepatocellular Carcinoma after Resection.

Liver Cancer. 2021-9-20

[3]
Predicting cancer outcomes with radiomics and artificial intelligence in radiology.

Nat Rev Clin Oncol. 2022-2

[4]
Predictors of long-term recurrence and survival after resection of HBV-related hepatocellular carcinoma: the role of HBsAg.

Am J Cancer Res. 2021-7-15

[5]
Up-to-Date Role of CT/MRI LI-RADS in Hepatocellular Carcinoma.

J Hepatocell Carcinoma. 2021-5-31

[6]
Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed.

PLoS One. 2021

[7]
Artificial intelligence in assessment of hepatocellular carcinoma treatment response.

Abdom Radiol (NY). 2021-8

[8]
Hepatocellular carcinoma.

Nat Rev Dis Primers. 2021-1-21

[9]
Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5D models.

Int J Comput Assist Radiol Surg. 2021-1

[10]
Liver tumor segmentation based on 3D convolutional neural network with dual scale.

J Appl Clin Med Phys. 2019-12-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索