Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Cancer Imaging. 2024 Mar 26;24(1):43. doi: 10.1186/s40644-024-00686-8.
BACKGROUND: Automatic segmentation of hepatocellular carcinoma (HCC) on computed tomography (CT) scans is in urgent need to assist diagnosis and radiomics analysis. The aim of this study is to develop a deep learning based network to detect HCC from dynamic CT images. METHODS: Dynamic CT images of 595 patients with HCC were used. Tumors in dynamic CT images were labeled by radiologists. Patients were randomly divided into training, validation and test sets in a ratio of 5:2:3, respectively. We developed a hierarchical fusion strategy of deep learning networks (HFS-Net). Global dice, sensitivity, precision and F1-score were used to measure performance of the HFS-Net model. RESULTS: The 2D DenseU-Net using dynamic CT images was more effective for segmenting small tumors, whereas the 2D U-Net using portal venous phase images was more effective for segmenting large tumors. The HFS-Net model performed better, compared with the single-strategy deep learning models in segmenting small and large tumors. In the test set, the HFS-Net model achieved good performance in identifying HCC on dynamic CT images with global dice of 82.8%. The overall sensitivity, precision and F1-score were 84.3%, 75.5% and 79.6% per slice, respectively, and 92.2%, 93.2% and 92.7% per patient, respectively. The sensitivity in tumors < 2 cm, 2-3, 3-5 cm and > 5 cm were 72.7%, 92.9%, 94.2% and 100% per patient, respectively. CONCLUSIONS: The HFS-Net model achieved good performance in the detection and segmentation of HCC from dynamic CT images, which may support radiologic diagnosis and facilitate automatic radiomics analysis.
背景:在计算机断层扫描(CT)扫描上自动分割肝细胞癌(HCC),以辅助诊断和放射组学分析,这是当务之急。本研究旨在开发一种基于深度学习的网络,从动态 CT 图像中检测 HCC。
方法:使用 595 例 HCC 患者的动态 CT 图像。放射科医生对动态 CT 图像中的肿瘤进行标记。患者按 5:2:3 的比例随机分为训练集、验证集和测试集。我们提出了一种深度学习网络的分层融合策略(HFS-Net)。采用全局 Dice、敏感性、精度和 F1 评分来评估 HFS-Net 模型的性能。
结果:使用动态 CT 图像的 2D DenseU-Net 对分割小肿瘤更有效,而使用门静脉期图像的 2D U-Net 对分割大肿瘤更有效。与单一策略的深度学习模型相比,HFS-Net 模型在分割小肿瘤和大肿瘤方面表现更好。在测试集中,HFS-Net 模型在识别动态 CT 图像上的 HCC 方面表现良好,全局 Dice 为 82.8%。每片的总体敏感性、精度和 F1 评分分别为 84.3%、75.5%和 79.6%,每位患者分别为 92.2%、93.2%和 92.7%。肿瘤 < 2cm、2-3cm、3-5cm 和 > 5cm 的患者敏感性分别为 72.7%、92.9%、94.2%和 100%。
结论:HFS-Net 模型在从动态 CT 图像中检测和分割 HCC 方面表现良好,这可能有助于放射学诊断,并促进自动放射组学分析。
Int J Comput Assist Radiol Surg. 2019-4-30
IEEE J Transl Eng Health Med. 2025-7-7
Turk J Gastroenterol. 2024-12-30
Front Oncol. 2024-9-3
Nat Rev Clin Oncol. 2022-2
J Hepatocell Carcinoma. 2021-5-31
Abdom Radiol (NY). 2021-8
Nat Rev Dis Primers. 2021-1-21
Int J Comput Assist Radiol Surg. 2021-1
J Appl Clin Med Phys. 2019-12-2