Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Cancer Imaging. 2024 Mar 26;24(1):43. doi: 10.1186/s40644-024-00686-8.
Automatic segmentation of hepatocellular carcinoma (HCC) on computed tomography (CT) scans is in urgent need to assist diagnosis and radiomics analysis. The aim of this study is to develop a deep learning based network to detect HCC from dynamic CT images.
Dynamic CT images of 595 patients with HCC were used. Tumors in dynamic CT images were labeled by radiologists. Patients were randomly divided into training, validation and test sets in a ratio of 5:2:3, respectively. We developed a hierarchical fusion strategy of deep learning networks (HFS-Net). Global dice, sensitivity, precision and F1-score were used to measure performance of the HFS-Net model.
The 2D DenseU-Net using dynamic CT images was more effective for segmenting small tumors, whereas the 2D U-Net using portal venous phase images was more effective for segmenting large tumors. The HFS-Net model performed better, compared with the single-strategy deep learning models in segmenting small and large tumors. In the test set, the HFS-Net model achieved good performance in identifying HCC on dynamic CT images with global dice of 82.8%. The overall sensitivity, precision and F1-score were 84.3%, 75.5% and 79.6% per slice, respectively, and 92.2%, 93.2% and 92.7% per patient, respectively. The sensitivity in tumors < 2 cm, 2-3, 3-5 cm and > 5 cm were 72.7%, 92.9%, 94.2% and 100% per patient, respectively.
The HFS-Net model achieved good performance in the detection and segmentation of HCC from dynamic CT images, which may support radiologic diagnosis and facilitate automatic radiomics analysis.
在计算机断层扫描(CT)扫描上自动分割肝细胞癌(HCC),以辅助诊断和放射组学分析,这是当务之急。本研究旨在开发一种基于深度学习的网络,从动态 CT 图像中检测 HCC。
使用 595 例 HCC 患者的动态 CT 图像。放射科医生对动态 CT 图像中的肿瘤进行标记。患者按 5:2:3 的比例随机分为训练集、验证集和测试集。我们提出了一种深度学习网络的分层融合策略(HFS-Net)。采用全局 Dice、敏感性、精度和 F1 评分来评估 HFS-Net 模型的性能。
使用动态 CT 图像的 2D DenseU-Net 对分割小肿瘤更有效,而使用门静脉期图像的 2D U-Net 对分割大肿瘤更有效。与单一策略的深度学习模型相比,HFS-Net 模型在分割小肿瘤和大肿瘤方面表现更好。在测试集中,HFS-Net 模型在识别动态 CT 图像上的 HCC 方面表现良好,全局 Dice 为 82.8%。每片的总体敏感性、精度和 F1 评分分别为 84.3%、75.5%和 79.6%,每位患者分别为 92.2%、93.2%和 92.7%。肿瘤 < 2cm、2-3cm、3-5cm 和 > 5cm 的患者敏感性分别为 72.7%、92.9%、94.2%和 100%。
HFS-Net 模型在从动态 CT 图像中检测和分割 HCC 方面表现良好,这可能有助于放射学诊断,并促进自动放射组学分析。