Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia.
UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia (UWA), 35 Stirling Highway, Crawley, WA 6009, Australia.
Trends Plant Sci. 2019 Feb;24(2):142-151. doi: 10.1016/j.tplants.2018.11.003. Epub 2018 Dec 14.
In this opinion article, we challenge the traditional view that breeding for reduced Cl uptake would benefit plant salinity tolerance. A negative correlation between shoot Cl concentration and plant biomass does not hold for halophytes - naturally salt tolerant species. We argue that, under physiologically relevant conditions, Cl uptake requires plants to invest metabolic energy, and that the poor selectivity of Cl-transporting proteins may explain the reported negative correlation between Cl accumulation and crop salinity tolerance. We propose a new paradigm: salinity tolerance could be achieved by improving the selectivity of some of the broadly selective anion-transporting proteins (e.g., for NO>Cl), alongside tight control of Cl uptake, rather than targeting traits mediating its efflux from the root.
在这篇观点文章中,我们质疑了传统观点,即培育减少 Cl 吸收会有益于植物的耐盐性。然而,对于盐生植物(天然耐盐物种)来说,地上部 Cl 浓度与植物生物量之间的负相关并不成立。我们认为,在生理相关条件下,Cl 的吸收需要植物投入代谢能量,并且 Cl 转运蛋白的选择性较差可能解释了 Cl 积累与作物耐盐性之间的负相关关系。我们提出了一个新的范例:通过提高一些广泛选择性阴离子转运蛋白(例如,NO>Cl)的选择性,以及严格控制 Cl 的吸收,而不是针对从根部排出 Cl 的相关性状,可能实现耐盐性。