Wu Yunzhen, Yuan Jingya, Shen Like, Li Qinxue, Li Zhuomeng, Cao Hongwei, Zhu Lin, Liu Dan, Sun Yalu, Jia Qianru, Chen Huatao, Wang Wubin, Kudla Jörg, Zhang Wenhua, Gai Junyi, Zhang Qun
College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China.
EMBO J. 2025 Feb;44(3):923-946. doi: 10.1038/s44318-024-00357-1. Epub 2025 Jan 3.
Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.5, as the dominant gene locus influencing Cl homeostasis in soybean (Glycine max). A natural SNP variation resulted in two haplotypes (GmNPF7.5 and GmNPF7.5), which was associated with Cl content. GmNPF7.5 mediated Cl or nitrate (NO) uptake in a pH-dependent manner and exhibited higher permeability for Cl over NO. The suppression of GmNPF7.5 expression decreased Cl accumulation and salt damage in plants, whereas its overexpression showed the opposite effects. The elite haplotype GmNPF7.5 diminished Cl transport activity independently from NO permeability, thus enhancing soybean salt tolerance. Furthermore, the protein kinase GmPI4Kγ4 could phosphorylate GmNPF7.5, which repressed Cl uptake without affecting NO permeability. Our findings define a regulatory mechanism for Cl control under NaCl stress, providing a strategy for the improvement of salt tolerance in soybean plants.
氯离子(Cl)对盐渍土壤中的作物造成严重损害。了解影响Cl吸收和转运的关键因素将有助于培育更耐盐的作物。在这里,我们通过全基因组关联研究和转录组分析,鉴定出一种硝酸盐转运蛋白1(NRT1)/肽转运蛋白家族(NPF)蛋白GmNPF7.5,它是影响大豆(Glycine max)中Cl稳态的主要基因座。一个自然的SNP变异产生了两种单倍型(GmNPF7.5和GmNPF7.5),这与Cl含量相关。GmNPF7.5以pH依赖的方式介导Cl或硝酸盐(NO)吸收,并且对Cl的通透性高于NO。抑制GmNPF7.5的表达会降低植物中Cl的积累和盐害,而其过表达则表现出相反的效果。优良单倍型GmNPF7.5独立于NO通透性降低了Cl转运活性,从而增强了大豆的耐盐性。此外,蛋白激酶GmPI4Kγ4可以磷酸化GmNPF7.5,从而抑制Cl吸收而不影响NO通透性。我们的研究结果确定了NaCl胁迫下Cl调控的机制,为提高大豆植株的耐盐性提供了策略。