Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA.
Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, USA.
Nat Chem Biol. 2019 Feb;15(2):189-195. doi: 10.1038/s41589-018-0192-3. Epub 2018 Dec 17.
Biological electron transfer is challenging to directly regulate using environmental conditions. To enable dynamic, protein-level control over energy flow in metabolic systems for synthetic biology and bioelectronics, we created ferredoxin logic gates that utilize transcriptional and post-translational inputs to control energy flow through a synthetic electron transfer pathway that is required for bacterial growth. These logic gates were created by subjecting a thermostable, plant-type ferredoxin to backbone fission and fusing the resulting fragments to a pair of proteins that self-associate, a pair of proteins whose association is stabilized by a small molecule, and to the termini of a ligand-binding domain. We show that the latter domain insertion design strategy yields an allosteric ferredoxin switch that acquires an oxygen-tolerant [2Fe-2S] cluster and can use different chemicals, including a therapeutic drug and an environmental pollutant, to control the production of a reduced metabolite in Escherichia coli and cell lysates.
生物电子转移很难通过环境条件直接调控。为了能够在代谢系统中对能量流动进行动态的、蛋白质水平的控制,用于合成生物学和生物电子学,我们创建了铁氧还蛋白逻辑门,该逻辑门利用转录和翻译后输入来控制通过合成电子转移途径的能量流动,该途径是细菌生长所必需的。这些逻辑门是通过对热稳定的植物型铁氧还蛋白进行骨架裂变,并将得到的片段融合到一对自组装的蛋白质、一对通过小分子稳定其结合的蛋白质以及配体结合结构域的末端来构建的。我们表明,后一种结构域插入设计策略产生了一种变构铁氧还蛋白开关,该开关能够获得耐氧 [2Fe-2S] 簇,并且可以使用不同的化学物质,包括治疗药物和环境污染物,来控制大肠杆菌和细胞裂解物中还原代谢物的产生。