Suppr超能文献

传播动作电位的全场干涉成像。

Full-field interferometric imaging of propagating action potentials.

作者信息

Ling Tong, Boyle Kevin C, Goetz Georges, Zhou Peng, Quan Yi, Alfonso Felix S, Huang Tiffany W, Palanker Daniel

机构信息

1Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 USA.

2Department of Ophthalmology, Stanford University, Stanford, CA 94305 USA.

出版信息

Light Sci Appl. 2018 Dec 12;7:107. doi: 10.1038/s41377-018-0107-9. eCollection 2018.

Abstract

Currently, cellular action potentials are detected using either electrical recordings or exogenous fluorescent probes that sense the calcium concentration or transmembrane voltage. Ca imaging has a low temporal resolution, while voltage indicators are vulnerable to phototoxicity, photobleaching, and heating. Here, we report full-field interferometric imaging of individual action potentials by detecting movement across the entire cell membrane. Using spike-triggered averaging of movies synchronized with electrical recordings, we demonstrate deformations up to 3 nm (0.9 mrad) during the action potential in spiking HEK-293 cells, with a rise time of 4 ms. The time course of the optically recorded spikes matches the electrical waveforms. Since the shot noise limit of the camera (~2 mrad/pix) precludes detection of the action potential in a single frame, for all-optical spike detection, images are acquired at 50 kHz, and 50 frames are binned into 1 ms steps to achieve a sensitivity of 0.3 mrad in a single pixel. Using a self-reinforcing sensitivity enhancement algorithm based on iteratively expanding the region of interest for spatial averaging, individual spikes can be detected by matching the previously extracted template of the action potential with the optical recording. This allows all-optical full-field imaging of the propagating action potentials without exogeneous labels or electrodes.

摘要

目前,细胞动作电位的检测方法是使用电记录或外源性荧光探针来感知钙浓度或跨膜电压。钙成像的时间分辨率较低,而电压指示剂易受光毒性、光漂白和加热的影响。在此,我们报告了通过检测整个细胞膜上的运动来对单个动作电位进行全场干涉成像。利用与电记录同步的电影的尖峰触发平均,我们证明了在尖峰发放的HEK-293细胞动作电位期间,变形高达3纳米(0.9毫弧度),上升时间为4毫秒。光学记录的尖峰的时间进程与电波形相匹配。由于相机的散粒噪声极限(约2毫弧度/像素)排除了在单帧中检测动作电位的可能性,对于全光尖峰检测,以50千赫兹采集图像,并且将50帧合并为1毫秒步长,以在单个像素中实现0.3毫弧度的灵敏度。使用基于迭代扩展用于空间平均的感兴趣区域的自增强灵敏度增强算法,通过将先前提取的动作电位模板与光学记录进行匹配,可以检测到单个尖峰。这允许在没有外源性标记或电极的情况下对传播的动作电位进行全光全场成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c06/6290013/fe71aeb917fb/41377_2018_107_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验