School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
Small. 2019 Jan;15(2):e1803758. doi: 10.1002/smll.201803758. Epub 2018 Nov 22.
Nanoparticles (NPs) are now used in numerous technologies and serve as carriers for several new classes of therapeutics. Studies of the distribution of NPs in vivo demonstrate that they can be transported through biological barriers and are concentrated in specific tissues. Here, transport behavior, and final destination of polystyrene NPs are reported in primary mouse cortical neurons and SH-SY5Y cells, cultured in two-compartmental microfluidic devices. In both cell types, negative polystyrene NPs (PS(-)) smaller than 100 nm are taken up by the axons, undergo axonal retrograde transport, and accumulate in the somata. Examination of NP transport reveals different transport mechanisms depending on the cell type, particle charge, and particle internalization by the lysosomes. In cortical neurons, PS(-) inside lysosomes and 40 nm positive polystyrene NPs undergo slow axonal transport, whereas PS(-) outside lysosomes undergo fast axonal transport. Inhibition of dynein in cortical neurons decreases the transport velocity and cause a dose-dependent reduction in the number of accumulated PS(-), suggesting that the fast axonal transport is dynein mediated. These results show that the axonal retrograde transport of NPs depends on the endosomal pathway taken and establishes a means for screening nanoparticle-based therapeutics for diseases that involve neurons.
纳米粒子(NPs)现在被广泛应用于许多技术中,并作为多种新型治疗药物的载体。对 NPs 在体内分布的研究表明,它们可以穿透生物屏障,并在特定组织中聚集。本研究报告了聚苯乙烯 NPs(PS(-))在原代培养的小鼠皮质神经元和 SH-SY5Y 细胞中的转运行为和最终归宿,这些细胞在双室微流控装置中进行培养。在这两种细胞类型中,小于 100nm 的带负电 PS(-) NPs 通过轴突被摄取,发生轴突逆行转运,并在胞体中积累。对 NP 转运的研究表明,转运机制取决于细胞类型、颗粒电荷和颗粒被溶酶体内化的情况。在皮质神经元中,溶酶体内的 PS(-)和 40nm 带正电 PS NPs 通过慢转运发生逆行转运,而溶酶体外的 PS(-)通过快转运发生逆行转运。在皮质神经元中抑制动力蛋白会降低转运速度,并导致积累的 PS(-)数量呈剂量依赖性减少,这表明快转运是由动力蛋白介导的。这些结果表明,NP 的轴突逆行转运取决于所采用的内体途径,并为筛选涉及神经元疾病的基于纳米颗粒的治疗方法提供了一种手段。