文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于无线神经调节的纳米换能器

Nanotransducers for Wireless Neuromodulation.

作者信息

Li Xiuying, Xiong Hejian, Rommelfanger Nicholas, Xu Xueqi, Youn Jonghae, Slesinger Paul A, Hong Guosong, Qin Zhenpeng

机构信息

Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.

Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

出版信息

Matter. 2021 May 5;4(5):1484-1510. doi: 10.1016/j.matt.2021.02.012.


DOI:10.1016/j.matt.2021.02.012
PMID:33997768
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8117115/
Abstract

Understanding the signal transmission and processing within the central nervous system (CNS) is a grand challenge in neuroscience. The past decade has witnessed significant advances in the development of new tools to address this challenge. Development of these new tools draws diverse expertise from genetics, materials science, electrical engineering, photonics and other disciplines. Among these tools, nanomaterials have emerged as a unique class of neural interfaces due to their small size, remote coupling and conversion of different energy modalities, various delivery methods, and mitigated chronic immune responses. In this review, we will discuss recent advances in nanotransducers to modulate and interface with the neural system without physical wires. Nanotransducers work collectively to modulate brain activity through optogenetic, mechanical, thermal, electrical and chemical modalities. We will compare important parameters among these techniques including the invasiveness, spatiotemporal precision, cell-type specificity, brain penetration, and translation to large animals and humans. Important areas for future research include a better understanding of the nanomaterials-brain interface, integration of sensing capability for bidirectional closed-loop neuromodulation, and genetically engineered functional materials for cell-type specific neuromodulation.

摘要

理解中枢神经系统(CNS)内的信号传输和处理是神经科学领域的一项重大挑战。在过去十年中,为应对这一挑战而开发的新工具取得了显著进展。这些新工具的开发借鉴了遗传学、材料科学、电气工程、光子学和其他学科的多种专业知识。在这些工具中,纳米材料因其尺寸小、远程耦合和不同能量模式的转换、多种递送方法以及减轻慢性免疫反应等特性,已成为一类独特的神经接口。在本综述中,我们将讨论纳米换能器在无需物理导线的情况下调节神经系统并与之接口方面的最新进展。纳米换能器共同发挥作用,通过光遗传学、机械、热、电和化学模式来调节大脑活动。我们将比较这些技术之间的重要参数,包括侵入性、时空精度、细胞类型特异性、脑穿透能力以及向大型动物和人类的转化。未来研究的重要领域包括更好地理解纳米材料与大脑的接口、集成用于双向闭环神经调节的传感能力,以及用于细胞类型特异性神经调节的基因工程功能材料。

相似文献

[1]
Nanotransducers for Wireless Neuromodulation.

Matter. 2021-5-5

[2]
Functional nanotransducer-mediated wireless neural modulation techniques.

Phys Med Biol. 2024-7-15

[3]
Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems.

Chem Soc Rev. 2023-5-22

[4]
Force-Based Neuromodulation.

Acc Chem Res. 2024-5-7

[5]
Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light.

ACS Nano. 2023-5-9

[6]
Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum.

Device. 2023-10-20

[7]
Photoacoustic: A Versatile Nongenetic Method for High-Precision Neuromodulation.

Acc Chem Res. 2024-6-4

[8]
Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.

Acc Chem Res. 2018-3-21

[9]
Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability.

Neuron. 2020-10-28

[10]
Nanotechnology Enables Novel Modalities for Neuromodulation.

Adv Mater. 2021-12

引用本文的文献

[1]
Biopiezoelectric-based nanomaterials; a promising strategy in cancer therapy.

J Exp Clin Cancer Res. 2025-6-4

[2]
Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces.

Nat Commun. 2025-2-21

[3]
Multimodal Characterization of Cortical Neuron Response to Permanent Magnetic Field Induced Nanomagnetic Force Maps.

ACS Nano. 2024-12-24

[4]
Combining external physical stimuli and nanostructured materials for upregulating pro-regenerative cellular pathways in peripheral nerve repair.

Front Cell Dev Biol. 2024-11-6

[5]
Emerging optogenetics technologies in biomedical applications.

Smart Med. 2023-11-1

[6]
Force-Based Neuromodulation.

Acc Chem Res. 2024-5-7

[7]
Nanoparticle-based optical interfaces for retinal neuromodulation: a review.

Front Cell Neurosci. 2024-3-20

[8]
Magnetoelectric nanoparticles shape modulates their electrical output.

Front Bioeng Biotechnol. 2023-8-25

[9]
Optical control of neuronal activities with photoswitchable nanovesicles.

Nano Res. 2023-1

[10]
Highly efficient green up-conversion emission from fluoroindate glass nanoparticles functionalized with a biocompatible polymer.

RSC Adv. 2022-7-11

本文引用的文献

[1]
A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo.

Nat Biotechnol. 2022-5

[2]
A genetically encoded sensor for measuring serotonin dynamics.

Nat Neurosci. 2021-5

[3]
Bioinspired Materials for Bioelectronic Neural Interfaces.

Matter. 2020-10-7

[4]
Next-generation GRAB sensors for monitoring dopaminergic activity in vivo.

Nat Methods. 2020-11

[5]
An optimized acetylcholine sensor for monitoring in vivo cholinergic activity.

Nat Methods. 2020-11

[6]
Mitigation of Carbon Nanotube Neurosensor Induced Transcriptomic and Morphological Changes in Mouse Microglia with Surface Passivation.

ACS Nano. 2020-10-27

[7]
An expanded palette of dopamine sensors for multiplex imaging in vivo.

Nat Methods. 2020-11

[8]
Targeted Neurostimulation in Mouse Brains with Non-invasive Ultrasound.

Cell Rep. 2020-8-18

[9]
Remotely Controlled Proton Generation for Neuromodulation.

Nano Lett. 2020-9-9

[10]
Uncovering a possible role of reactive oxygen species in magnetogenetics.

Sci Rep. 2020-8-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索