Li Xiuying, Xiong Hejian, Rommelfanger Nicholas, Xu Xueqi, Youn Jonghae, Slesinger Paul A, Hong Guosong, Qin Zhenpeng
Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
Matter. 2021 May 5;4(5):1484-1510. doi: 10.1016/j.matt.2021.02.012.
Understanding the signal transmission and processing within the central nervous system (CNS) is a grand challenge in neuroscience. The past decade has witnessed significant advances in the development of new tools to address this challenge. Development of these new tools draws diverse expertise from genetics, materials science, electrical engineering, photonics and other disciplines. Among these tools, nanomaterials have emerged as a unique class of neural interfaces due to their small size, remote coupling and conversion of different energy modalities, various delivery methods, and mitigated chronic immune responses. In this review, we will discuss recent advances in nanotransducers to modulate and interface with the neural system without physical wires. Nanotransducers work collectively to modulate brain activity through optogenetic, mechanical, thermal, electrical and chemical modalities. We will compare important parameters among these techniques including the invasiveness, spatiotemporal precision, cell-type specificity, brain penetration, and translation to large animals and humans. Important areas for future research include a better understanding of the nanomaterials-brain interface, integration of sensing capability for bidirectional closed-loop neuromodulation, and genetically engineered functional materials for cell-type specific neuromodulation.
理解中枢神经系统(CNS)内的信号传输和处理是神经科学领域的一项重大挑战。在过去十年中,为应对这一挑战而开发的新工具取得了显著进展。这些新工具的开发借鉴了遗传学、材料科学、电气工程、光子学和其他学科的多种专业知识。在这些工具中,纳米材料因其尺寸小、远程耦合和不同能量模式的转换、多种递送方法以及减轻慢性免疫反应等特性,已成为一类独特的神经接口。在本综述中,我们将讨论纳米换能器在无需物理导线的情况下调节神经系统并与之接口方面的最新进展。纳米换能器共同发挥作用,通过光遗传学、机械、热、电和化学模式来调节大脑活动。我们将比较这些技术之间的重要参数,包括侵入性、时空精度、细胞类型特异性、脑穿透能力以及向大型动物和人类的转化。未来研究的重要领域包括更好地理解纳米材料与大脑的接口、集成用于双向闭环神经调节的传感能力,以及用于细胞类型特异性神经调节的基因工程功能材料。
Matter. 2021-5-5
Phys Med Biol. 2024-7-15
Acc Chem Res. 2024-5-7
ACS Nano. 2023-5-9
Acc Chem Res. 2024-6-4
Acc Chem Res. 2018-3-21
Adv Mater. 2021-12
J Exp Clin Cancer Res. 2025-6-4
Nat Commun. 2025-2-21
Smart Med. 2023-11-1
Acc Chem Res. 2024-5-7
Front Cell Neurosci. 2024-3-20
Front Bioeng Biotechnol. 2023-8-25
Nat Neurosci. 2021-5
Matter. 2020-10-7
Nat Methods. 2020-11
Nat Methods. 2020-11
Nat Methods. 2020-11
Cell Rep. 2020-8-18
Nano Lett. 2020-9-9