Suppr超能文献

用于无线神经调节的纳米换能器

Nanotransducers for Wireless Neuromodulation.

作者信息

Li Xiuying, Xiong Hejian, Rommelfanger Nicholas, Xu Xueqi, Youn Jonghae, Slesinger Paul A, Hong Guosong, Qin Zhenpeng

机构信息

Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.

Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

出版信息

Matter. 2021 May 5;4(5):1484-1510. doi: 10.1016/j.matt.2021.02.012.

Abstract

Understanding the signal transmission and processing within the central nervous system (CNS) is a grand challenge in neuroscience. The past decade has witnessed significant advances in the development of new tools to address this challenge. Development of these new tools draws diverse expertise from genetics, materials science, electrical engineering, photonics and other disciplines. Among these tools, nanomaterials have emerged as a unique class of neural interfaces due to their small size, remote coupling and conversion of different energy modalities, various delivery methods, and mitigated chronic immune responses. In this review, we will discuss recent advances in nanotransducers to modulate and interface with the neural system without physical wires. Nanotransducers work collectively to modulate brain activity through optogenetic, mechanical, thermal, electrical and chemical modalities. We will compare important parameters among these techniques including the invasiveness, spatiotemporal precision, cell-type specificity, brain penetration, and translation to large animals and humans. Important areas for future research include a better understanding of the nanomaterials-brain interface, integration of sensing capability for bidirectional closed-loop neuromodulation, and genetically engineered functional materials for cell-type specific neuromodulation.

摘要

理解中枢神经系统(CNS)内的信号传输和处理是神经科学领域的一项重大挑战。在过去十年中,为应对这一挑战而开发的新工具取得了显著进展。这些新工具的开发借鉴了遗传学、材料科学、电气工程、光子学和其他学科的多种专业知识。在这些工具中,纳米材料因其尺寸小、远程耦合和不同能量模式的转换、多种递送方法以及减轻慢性免疫反应等特性,已成为一类独特的神经接口。在本综述中,我们将讨论纳米换能器在无需物理导线的情况下调节神经系统并与之接口方面的最新进展。纳米换能器共同发挥作用,通过光遗传学、机械、热、电和化学模式来调节大脑活动。我们将比较这些技术之间的重要参数,包括侵入性、时空精度、细胞类型特异性、脑穿透能力以及向大型动物和人类的转化。未来研究的重要领域包括更好地理解纳米材料与大脑的接口、集成用于双向闭环神经调节的传感能力,以及用于细胞类型特异性神经调节的基因工程功能材料。

相似文献

1
Nanotransducers for Wireless Neuromodulation.用于无线神经调节的纳米换能器
Matter. 2021 May 5;4(5):1484-1510. doi: 10.1016/j.matt.2021.02.012.
4
Force-Based Neuromodulation.力反馈神经调控
Acc Chem Res. 2024 May 7;57(9):1384-1397. doi: 10.1021/acs.accounts.4c00074. Epub 2024 Apr 24.
8
Multifunctional Fibers as Tools for Neuroscience and Neuroengineering.多功能纤维作为神经科学和神经工程的工具。
Acc Chem Res. 2018 Apr 17;51(4):829-838. doi: 10.1021/acs.accounts.7b00558. Epub 2018 Mar 21.
10
Nanotechnology Enables Novel Modalities for Neuromodulation.纳米技术为神经调节开辟了新途径。
Adv Mater. 2021 Dec;33(52):e2103208. doi: 10.1002/adma.202103208. Epub 2021 Oct 19.

引用本文的文献

5
Emerging optogenetics technologies in biomedical applications.生物医学应用中的新兴光遗传学技术。
Smart Med. 2023 Nov 1;2(4):e20230026. doi: 10.1002/SMMD.20230026. eCollection 2023 Nov.
6
Force-Based Neuromodulation.力反馈神经调控
Acc Chem Res. 2024 May 7;57(9):1384-1397. doi: 10.1021/acs.accounts.4c00074. Epub 2024 Apr 24.
8
Magnetoelectric nanoparticles shape modulates their electrical output.磁电纳米颗粒的形状会调节其电输出。
Front Bioeng Biotechnol. 2023 Aug 25;11:1219777. doi: 10.3389/fbioe.2023.1219777. eCollection 2023.

本文引用的文献

2
A genetically encoded sensor for measuring serotonin dynamics.用于测量血清素动态变化的基因编码传感器。
Nat Neurosci. 2021 May;24(5):746-752. doi: 10.1038/s41593-021-00823-7. Epub 2021 Apr 5.
7
An expanded palette of dopamine sensors for multiplex imaging in vivo.体内多重成像的多巴胺传感器的扩展库。
Nat Methods. 2020 Nov;17(11):1147-1155. doi: 10.1038/s41592-020-0936-3. Epub 2020 Sep 7.
9
Remotely Controlled Proton Generation for Neuromodulation.遥控质子生成用于神经调节。
Nano Lett. 2020 Sep 9;20(9):6535-6541. doi: 10.1021/acs.nanolett.0c02281. Epub 2020 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验