Suppr超能文献

纳米颗粒辅助的内体光学拴系揭示了动力蛋白在逆行轴突运输中的协同功能。

Nanoparticle-assisted optical tethering of endosomes reveals the cooperative function of dyneins in retrograde axonal transport.

作者信息

Chowdary Praveen D, Che Daphne L, Kaplan Luke, Chen Ou, Pu Kanyi, Bawendi Moungi, Cui Bianxiao

机构信息

Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA.

Department of Chemistry, Massachussets Institute of Technology, 77 Massachussets Ave, Cambridge, MA 02139, USA.

出版信息

Sci Rep. 2015 Dec 10;5:18059. doi: 10.1038/srep18059.

Abstract

Dynein-dependent transport of organelles from the axon terminals to the cell bodies is essential to the survival and function of neurons. However, quantitative knowledge of dyneins on axonal organelles and their collective function during this long-distance transport is lacking because current technologies to do such measurements are not applicable to neurons. Here, we report a new method termed nanoparticle-assisted optical tethering of endosomes (NOTE) that made it possible to study the cooperative mechanics of dyneins on retrograde axonal endosomes in live neurons. In this method, the opposing force from an elastic tether causes the endosomes to gradually stall under load and detach with a recoil velocity proportional to the dynein forces. These recoil velocities reveal that the axonal endosomes, despite their small size, can recruit up to 7 dyneins that function as independent mechanical units stochastically sharing load, which is vital for robust retrograde axonal transport. This study shows that NOTE, which relies on controlled generation of reactive oxygen species, is a viable method to manipulate small cellular cargos that are beyond the reach of current technology.

摘要

从轴突末端到细胞体的细胞器的动力蛋白依赖性运输对神经元的存活和功能至关重要。然而,由于目前用于此类测量的技术不适用于神经元,因此缺乏关于轴突细胞器上动力蛋白及其在这种长距离运输过程中的集体功能的定量知识。在此,我们报告了一种称为纳米颗粒辅助内体光学拴系(NOTE)的新方法,该方法使研究动力蛋白在活神经元中逆行轴突内体上的协同力学成为可能。在这种方法中,来自弹性拴系的反向力使内体在负载下逐渐停滞,并以与动力蛋白力成比例的反冲速度分离。这些反冲速度表明,轴突内体尽管体积小,但最多可募集7个动力蛋白,这些动力蛋白作为独立的机械单元随机分担负载,这对稳健的逆行轴突运输至关重要。这项研究表明,依赖于活性氧的可控生成的NOTE是一种可行的方法,可用于操纵当前技术无法触及的小细胞货物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d2/4674899/f180008f97cf/srep18059-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验