Suppr超能文献

含氮三乙酸脂质纳米颗粒实现组蛋白标记基因组编辑蛋白的细胞内递送。

Intracellular Delivery of His-Tagged Genome-Editing Proteins Enabled by Nitrilotriacetic Acid-Containing Lipidoid Nanoparticles.

机构信息

Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.

出版信息

Adv Healthc Mater. 2019 Mar;8(6):e1800996. doi: 10.1002/adhm.201800996. Epub 2018 Nov 22.

Abstract

Protein- and peptide-based therapeutics with high tolerance and specificity along with low off-target effects and genetic risks have attracted tremendous attention over the last three decades. Herein, a new type of noncationic lipidoid nanoparticle (LNP) is reported for His-tagged protein delivery. Active lipidoids are synthesized by conjugating a nitrilotriacetic acid group with hydrophobic tails (EC16, O16B, and O17O) and nanoparticles are formulated in the presence of nickel ions and helper lipids (cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]). It is demonstrated that the newly developed LNPs are capable of delivering various His-tagged proteins including green fluorescent protein (GFP), (-30)GFP-Cre recombinase, and CRISPR/Cas9 ribonucleoprotein into mammalian cells.

摘要

在过去的三十年中,具有高耐受性和特异性、低脱靶效应和遗传风险的蛋白质和肽类治疗药物引起了极大的关注。在此,报道了一种新型的非阳离子脂质纳米颗粒(LNP)用于 His 标签蛋白的递药。活性脂质体是通过将氮川三乙酸基团与疏水尾部(EC16、O16B 和 O17O)偶联合成的,纳米颗粒是在镍离子和辅助脂质(胆固醇、1,2-二油酰基-sn-甘油-3-磷酸乙醇胺和 1,2-二硬脂酰基-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000])的存在下配制的。结果表明,新开发的 LNP 能够递送各种 His 标签蛋白,包括绿色荧光蛋白(GFP)、(-30)GFP-Cre 重组酶和 CRISPR/Cas9 核糖核蛋白进入哺乳动物细胞。

相似文献

1
Intracellular Delivery of His-Tagged Genome-Editing Proteins Enabled by Nitrilotriacetic Acid-Containing Lipidoid Nanoparticles.
Adv Healthc Mater. 2019 Mar;8(6):e1800996. doi: 10.1002/adhm.201800996. Epub 2018 Nov 22.
2
Combinatorial library of chalcogen-containing lipidoids for intracellular delivery of genome-editing proteins.
Biomaterials. 2018 Sep;178:652-662. doi: 10.1016/j.biomaterials.2018.03.011. Epub 2018 Mar 8.
3
Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles.
Adv Mater. 2019 Aug;31(33):e1902575. doi: 10.1002/adma.201902575. Epub 2019 Jun 19.
5
Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub 2013 Jul 17.
6
Nonfouling NTA-PEG-Based TEM Grid Coatings for Selective Capture of Histidine-Tagged Protein Targets from Cell Lysates.
Langmuir. 2016 Jan 19;32(2):551-9. doi: 10.1021/acs.langmuir.5b03445. Epub 2016 Jan 4.
8
Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing.
Acc Chem Res. 2019 Mar 19;52(3):665-675. doi: 10.1021/acs.accounts.8b00493. Epub 2018 Dec 26.
9
Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles.
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2868-73. doi: 10.1073/pnas.1520244113. Epub 2016 Feb 29.
10
mRNA Delivery Using Bioreducible Lipidoid Nanoparticles Facilitates Neural Differentiation of Human Mesenchymal Stem Cells.
Adv Healthc Mater. 2021 Feb;10(4):e2000938. doi: 10.1002/adhm.202000938. Epub 2020 Aug 19.

引用本文的文献

1
Finely tuned ionizable lipid nanoparticles for CRISPR/Cas9 ribonucleoprotein delivery and gene editing.
J Nanobiotechnology. 2024 Apr 12;22(1):175. doi: 10.1186/s12951-024-02427-2.
3
Carrier strategies boost the application of CRISPR/Cas system in gene therapy.
Exploration (Beijing). 2022 Mar 15;2(2):20210081. doi: 10.1002/EXP.20210081. eCollection 2022 Apr.
4
5
Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery.
Biomacromolecules. 2021 Dec 13;22(12):4883-4904. doi: 10.1021/acs.biomac.1c00745. Epub 2021 Dec 2.
6
Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing.
Theranostics. 2021 Jan 1;11(2):614-648. doi: 10.7150/thno.47007. eCollection 2021.
7
Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects.
Sci Adv. 2020 Jul 15;6(29):eabb4005. doi: 10.1126/sciadv.abb4005. eCollection 2020 Jul.
8
Combinatorial Library of Cyclic Benzylidene Acetal-Containing pH-Responsive Lipidoid Nanoparticles for Intracellular mRNA Delivery.
Bioconjug Chem. 2020 Jul 15;31(7):1835-1843. doi: 10.1021/acs.bioconjchem.0c00295. Epub 2020 Jun 24.
9
Protein and mRNA Delivery Enabled by Cholesteryl-Based Biodegradable Lipidoid Nanoparticles.
Angew Chem Int Ed Engl. 2020 Aug 24;59(35):14957-14964. doi: 10.1002/anie.202004994. Epub 2020 Jun 15.
10
Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications.
Biomaterials. 2020 Mar;234:119711. doi: 10.1016/j.biomaterials.2019.119711. Epub 2020 Jan 10.

本文引用的文献

1
Rescued from the fate of neurological disorder.
Nat Biomed Eng. 2018 Jul;2(7):469-470. doi: 10.1038/s41551-018-0267-1.
2
Nanoparticles for CRISPR-Cas9 delivery.
Nat Biomed Eng. 2017 Nov;1(11):854-855. doi: 10.1038/s41551-017-0158-x. Epub 2017 Nov 10.
4
CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.
Nat Med. 2018 Jul;24(7):927-930. doi: 10.1038/s41591-018-0049-z. Epub 2018 Jun 11.
5
Combinatorial library of chalcogen-containing lipidoids for intracellular delivery of genome-editing proteins.
Biomaterials. 2018 Sep;178:652-662. doi: 10.1016/j.biomaterials.2018.03.011. Epub 2018 Mar 8.
6
Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound-Propelled Nanomotors.
Angew Chem Int Ed Engl. 2018 Mar 1;57(10):2657-2661. doi: 10.1002/anie.201713082. Epub 2018 Feb 6.
7
Engineering the Delivery System for CRISPR-Based Genome Editing.
Trends Biotechnol. 2018 Feb;36(2):173-185. doi: 10.1016/j.tibtech.2017.11.006. Epub 2018 Jan 2.
8
Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework.
J Am Chem Soc. 2018 Jan 10;140(1):143-146. doi: 10.1021/jacs.7b11754. Epub 2017 Dec 27.
9
Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents.
Nature. 2018 Jan 11;553(7687):217-221. doi: 10.1038/nature25164. Epub 2017 Dec 20.
10
Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application.
Chem Soc Rev. 2017 Oct 30;46(21):6570-6599. doi: 10.1039/c7cs00460e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验