From the Department of Biomedical Engineering (W.Z., T.L.V., P.H., J.D.M., P.A., K.M.N., J.R.S.), Washington University in St Louis, MO.
Molecular Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy (A.M., S.G.P.).
Circ Res. 2019 Feb 15;124(4):539-552. doi: 10.1161/CIRCRESAHA.118.314050.
Mutations in the SCN5A gene, encoding the α subunit of the Nav1.5 channel, cause a life-threatening form of cardiac arrhythmia, long QT syndrome type 3 (LQT3). Mexiletine, which is structurally related to the Na channel-blocking anesthetic lidocaine, is used to treat LQT3 patients. However, the patient response is variable, depending on the genetic mutation in SCN5A.
The goal of this study is to understand the molecular basis of patients' variable responses and build a predictive statistical model that can be used to personalize mexiletine treatment based on patient's genetic variant.
We monitored the cardiac Na channel voltage-sensing domain (VSD) conformational dynamics simultaneously with other gating properties for the LQT3 variants. To systematically identify the relationship between mexiletine block and channel biophysical properties, we used a system-based statistical modeling approach to connect the multivariate properties to patient phenotype. We found that mexiletine altered the conformation of the Domain III VSD, which is the same VSD that many tested LQT3 mutations affect. Analysis of 15 LQT3 variants showed a strong correlation between the activation of the Domain III-VSD and the strength of the inhibition of the channel by mexiletine. Based on this improved molecular-level understanding, we generated a systems-based model based on a dataset of 32 LQT3 patients, which then successfully predicted the response of 7 out of 8 patients to mexiletine in a blinded, retrospective trial.
Our results imply that the modulated receptor theory of local anesthetic action, which confines local anesthetic binding effects to the channel pore, should be revised to include drug interaction with the Domain III-VSD. Using an algorithm that incorporates this mode of action, we can predict patient-specific responses to mexiletine, improving therapeutic decision making.
SCN5A 基因突变,编码 Nav1.5 通道的 α 亚基,导致危及生命的心律失常,长 QT 综合征 3 型(LQT3)。美西律与 Na 通道阻断麻醉剂利多卡因在结构上相关,用于治疗 LQT3 患者。然而,患者的反应是可变的,取决于 SCN5A 的基因突变。
本研究的目的是了解患者可变反应的分子基础,并建立一个预测统计模型,根据患者的遗传变异来个性化美西律治疗。
我们同时监测 LQT3 变体的心脏 Na 通道电压感应域(VSD)构象动力学和其他门控特性。为了系统地确定美西律阻断与通道生物物理特性之间的关系,我们使用基于系统的统计建模方法将多变量特性与患者表型联系起来。我们发现美西律改变了域 III VSD 的构象,这是许多测试的 LQT3 突变影响的相同 VSD。对 15 种 LQT3 变体的分析表明,域 III-VSD 的激活与美西律对通道的抑制强度之间存在很强的相关性。基于这种改进的分子水平理解,我们基于 32 名 LQT3 患者的数据集生成了一个基于系统的模型,该模型随后在盲、回顾性试验中成功预测了 7 名患者中的 8 名对美西律的反应。
我们的结果表明,局部麻醉作用的调制受体理论,将局部麻醉剂结合作用局限于通道孔,应加以修正,以包括药物与域 III-VSD 的相互作用。使用包含这种作用模式的算法,我们可以预测患者对美西律的特异性反应,从而改善治疗决策。