Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN, 46556, USA.
Centro de Investigación en Matemáticas, A.C. (CIMAT), Jalisco S/N, Col. Valenciana, CP: 36023, Guanajuato, Gto, Mexico.
Bull Math Biol. 2019 Nov;81(11):4447-4469. doi: 10.1007/s11538-018-00561-1. Epub 2018 Dec 19.
We propose and analyze a mathematical model of a vector-borne disease that includes vector feeding preference for carrier hosts and intrinsic incubation in hosts. Analysis of the model reveals the following novel results. We show theoretically and numerically that vector feeding preference for carrier hosts plays an important role for the existence of both the endemic equilibria and backward bifurcation when the basic reproduction number [Formula: see text] is less than one. Moreover, by increasing the vector feeding preference value, backward bifurcation is eliminated and endemic equilibria for hosts and vectors are diminished. Therefore, the vector protects itself and this benefits the host. As an example of these phenomena, we present a case of Andean cutaneous leishmaniasis in Peru. We use parameter values from previous studies, primarily from Peru to introduce bifurcation diagrams and compute global sensitivity of [Formula: see text] in order to quantify and understand the effects of the important parameters of our model. Global sensitivity analysis via partial rank correlation coefficient shows that [Formula: see text] is highly sensitive to both sandflies feeding preference and mortality rate of sandflies.
我们提出并分析了一个带有媒介的疾病的数学模型,该模型包括媒介对载体宿主的摄食偏好和宿主的内在潜伏期。模型分析揭示了以下新的结果。我们从理论和数值上表明,当基本再生数 [Formula: see text]小于 1 时,媒介对载体宿主的摄食偏好对地方病平衡点和向后分歧的存在起着重要作用。此外,通过增加媒介的摄食偏好值,可以消除向后分歧,减少宿主和媒介的地方病平衡点。因此,媒介保护了自己,这对宿主有利。作为这些现象的一个例子,我们提出了秘鲁安第斯皮肤利什曼病的一个案例。我们使用来自先前研究的参数值,主要来自秘鲁,引入分歧图,并计算 [Formula: see text]的全局敏感性,以量化和理解我们模型的重要参数的影响。通过偏秩相关系数的全局敏感性分析表明,[Formula: see text]对沙蝇的摄食偏好和沙蝇的死亡率都非常敏感。