Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461.
Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
J Neurosci. 2022 Apr 6;42(14):2872-2884. doi: 10.1523/JNEUROSCI.0922-21.2022. Epub 2022 Feb 23.
Mossy cells (MCs) of the dentate gyrus are key components of an excitatory associative circuit established by reciprocal connections with dentate granule cells (GCs). MCs are implicated in place field encoding, pattern separation, and novelty detection, as well as in brain disorders such as temporal lobe epilepsy and depression. Despite their functional relevance, little is known about the determinants that control MC activity. Here, we examined whether MCs express functional kainate receptors (KARs), a subtype of glutamate receptors involved in neuronal development, synaptic transmission, and epilepsy. Using mouse hippocampal slices, we found that bath application of submicromolar and micromolar concentrations of the KAR agonist kainic acid induced inward currents and robust MC firing. These effects were abolished in GluK2 KO mice, indicating the presence of functional GluK2-containing KARs in MCs. In contrast to CA3 pyramidal cells, which are structurally and functionally similar to MCs and express synaptic KARs at mossy fiber (MF) inputs (i.e., GC axons), we found no evidence for KAR-mediated transmission at MF-MC synapses, indicating that most KARs at MCs are extrasynaptic. Immunofluorescence and immunoelectron microscopy analyses confirmed the extrasynaptic localization of GluK2-containing KARs in MCs. Finally, blocking glutamate transporters, a manipulation that increases extracellular levels of endogenous glutamate, was sufficient to induce KAR-mediated inward currents in MCs, suggesting that MC-KARs can be activated by increases in ambient glutamate. Our findings provide the first direct evidence of functional extrasynaptic KARs at a critical excitatory neuron of the hippocampus. Hilar mossy cells (MCs) are an understudied population of hippocampal neurons that form an excitatory loop with dentate granule cells. MCs have been implicated in pattern separation, spatial navigation, and epilepsy. Despite their importance in hippocampal function and disease, little is known about how MC activity is recruited. Here, we show for the first time that MCs express extrasynaptic kainate receptors (KARs), a subtype of glutamate receptors critically involved in neuronal function and epilepsy. While we found no evidence for synaptic KARs in MCs, KAR activation induced strong action potential firing of MCs, raising the possibility that extracellular KARs regulate MC excitability and may also promote dentate gyrus hyperexcitability and epileptogenesis.
齿状回的苔藓细胞(MCs)是由与齿状颗粒细胞(GCs)的相互连接建立的兴奋性关联回路的关键组成部分。MCs 参与位置场编码、模式分离和新颖性检测,以及颞叶癫痫和抑郁症等脑部疾病。尽管它们具有功能相关性,但对于控制 MC 活性的决定因素知之甚少。在这里,我们研究了 MC 是否表达功能性海人酸受体(KARs),KAR 是一种参与神经元发育、突触传递和癫痫的谷氨酸受体亚型。使用小鼠海马切片,我们发现亚微摩尔和微摩尔浓度的 KAR 激动剂海人酸的浴应用诱导内向电流和强烈的 MC 放电。这些效应在 GluK2 KO 小鼠中被消除,表明 MC 中存在功能性包含 GluK2 的 KAR。与 CA3 锥体神经元不同,后者在结构和功能上与 MC 相似,并在苔藓纤维(MF)输入(即 GC 轴突)处表达突触 KAR,我们没有发现 MF-MC 突触处存在 KAR 介导的传递的证据,表明 MC 中的大多数 KAR 是 extrasynaptic 的。免疫荧光和免疫电子显微镜分析证实了包含 GluK2 的 KAR 在 MC 中的 extrasynaptic 定位。最后,阻断谷氨酸转运体,这一操作会增加内源性谷氨酸的细胞外水平,足以在 MC 中诱导 KAR 介导的内向电流,表明 MC-KAR 可以被环境谷氨酸的增加激活。我们的研究结果提供了第一个直接证据,证明海马体中关键兴奋性神经元存在功能性 extrasynaptic KAR。齿状回的苔藓细胞(MCs)是海马体中研究较少的神经元群体,它们与齿状颗粒细胞形成兴奋性环路。MCs 与模式分离、空间导航和癫痫有关。尽管它们在海马体功能和疾病中的重要性,但对于如何招募 MC 活动知之甚少。在这里,我们首次表明 MC 表达 extrasynaptic 海人酸受体(KARs),KAR 是一种在神经元功能和癫痫中起关键作用的谷氨酸受体亚型。虽然我们没有在 MC 中发现突触 KAR 的证据,但 KAR 的激活诱导了 MC 的强烈动作电位放电,这增加了细胞外 KAR 调节 MC 兴奋性的可能性,并且可能也促进了齿状回过度兴奋和癫痫形成。