Fan Zhun, Lu Jiewei, Wei Caimin, Huang Han, Cai Xinye, Chen Xinjian
IEEE Trans Image Process. 2018 Dec 17. doi: 10.1109/TIP.2018.2885495.
In this paper, a hierarchical image matting model is proposed to extract blood vessels from fundus images. More specifically, a hierarchical strategy is integrated into the image matting model for blood vessel segmentation. Normally the matting models require a user specified trimap, which separates the input image into three regions: the foreground, background and unknown regions. However, creating a user specified trimap is laborious for vessel segmentation tasks. In this paper, we propose a method that first generates trimap automatically by utilizing region features of blood vessels, then applies a hierarchical image matting model to extract the vessel pixels from the unknown regions. The proposed method has low calculation time and outperforms many other state-of-art supervised and unsupervised methods. It achieves a vessel segmentation accuracy of 96.0%, 95.7% and 95.1% in an average time of 10.72s, 15.74s and 50.71s on images from three publicly available fundus image datasets DRIVE, STARE, and CHASE DB1, respectively.
本文提出了一种分层图像抠图模型,用于从眼底图像中提取血管。更具体地说,将一种分层策略集成到用于血管分割的图像抠图模型中。通常,抠图模型需要用户指定的三值图,该三值图将输入图像分为三个区域:前景、背景和未知区域。然而,为血管分割任务创建用户指定的三值图很费力。在本文中,我们提出了一种方法,该方法首先利用血管的区域特征自动生成三值图,然后应用分层图像抠图模型从未知区域中提取血管像素。所提出的方法计算时间短,优于许多其他现有的监督和无监督方法。在来自三个公开可用的眼底图像数据集DRIVE、STARE和CHASE DB1的图像上,该方法分别在平均10.72秒、15.74秒和50.71秒的时间内实现了96.0%、95.7%和95.1%的血管分割准确率。