Suppr超能文献

一种用于眼底图像中血管分割的分层图像抠图模型。

A Hierarchical Image Matting Model for Blood Vessel Segmentation in Fundus Images.

作者信息

Fan Zhun, Lu Jiewei, Wei Caimin, Huang Han, Cai Xinye, Chen Xinjian

出版信息

IEEE Trans Image Process. 2018 Dec 17. doi: 10.1109/TIP.2018.2885495.

Abstract

In this paper, a hierarchical image matting model is proposed to extract blood vessels from fundus images. More specifically, a hierarchical strategy is integrated into the image matting model for blood vessel segmentation. Normally the matting models require a user specified trimap, which separates the input image into three regions: the foreground, background and unknown regions. However, creating a user specified trimap is laborious for vessel segmentation tasks. In this paper, we propose a method that first generates trimap automatically by utilizing region features of blood vessels, then applies a hierarchical image matting model to extract the vessel pixels from the unknown regions. The proposed method has low calculation time and outperforms many other state-of-art supervised and unsupervised methods. It achieves a vessel segmentation accuracy of 96.0%, 95.7% and 95.1% in an average time of 10.72s, 15.74s and 50.71s on images from three publicly available fundus image datasets DRIVE, STARE, and CHASE DB1, respectively.

摘要

本文提出了一种分层图像抠图模型,用于从眼底图像中提取血管。更具体地说,将一种分层策略集成到用于血管分割的图像抠图模型中。通常,抠图模型需要用户指定的三值图,该三值图将输入图像分为三个区域:前景、背景和未知区域。然而,为血管分割任务创建用户指定的三值图很费力。在本文中,我们提出了一种方法,该方法首先利用血管的区域特征自动生成三值图,然后应用分层图像抠图模型从未知区域中提取血管像素。所提出的方法计算时间短,优于许多其他现有的监督和无监督方法。在来自三个公开可用的眼底图像数据集DRIVE、STARE和CHASE DB1的图像上,该方法分别在平均10.72秒、15.74秒和50.71秒的时间内实现了96.0%、95.7%和95.1%的血管分割准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验